Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $201$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,13,16,12,5,4,17,9)(2,14,15,11,6,3,18,10)(7,8)(19,20), (3,17,19)(4,18,20)(5,8,10,11,14,16)(6,7,9,12,13,15) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: None
Degree 10: $(A_6 : C_2) : C_2$
Low degree siblings
10T35, 12T220, 20T204, 20T208, 24T2960, 30T264, 36T2341, 40T1198, 40T1199, 40T1201, 45T187Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $45$ | $2$ | $( 1,10)( 2, 9)( 5,16)( 6,15)(11,17)(12,18)(13,20)(14,19)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $180$ | $4$ | $( 1, 6,10,15)( 2, 5, 9,16)( 3, 4)( 7, 8)(11,20,17,13)(12,19,18,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $36$ | $2$ | $( 1,20)( 2,19)( 3, 6)( 4, 5)( 7,17)( 8,18)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 5, 5, 5, 5 $ | $144$ | $5$ | $( 1,14, 3,17,11)( 2,13, 4,18,12)( 5, 8,10,19,16)( 6, 7, 9,20,15)$ |
| $ 10, 10 $ | $144$ | $10$ | $( 1, 7,14, 9, 3,20,17,15,11, 6)( 2, 8,13,10, 4,19,18,16,12, 5)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $30$ | $2$ | $( 1,19)( 2,20)( 5, 8)( 6, 7)(11,14)(12,13)$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1 $ | $80$ | $3$ | $( 1,11, 5)( 2,12, 6)( 7,20,13)( 8,19,14)( 9,15,18)(10,16,17)$ |
| $ 6, 6, 3, 3, 1, 1 $ | $240$ | $6$ | $( 1, 8,11,19, 5,14)( 2, 7,12,20, 6,13)( 9,18,15)(10,17,16)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $90$ | $4$ | $( 1,17,10,11)( 2,18, 9,12)( 3, 8)( 4, 7)( 5,14,16,19)( 6,13,15,20)$ |
| $ 4, 4, 4, 4, 1, 1, 1, 1 $ | $90$ | $4$ | $( 1,11,10,17)( 2,12, 9,18)( 5,14,16,19)( 6,13,15,20)$ |
| $ 8, 8, 2, 2 $ | $180$ | $8$ | $( 1,20,11, 6,10,13,17,15)( 2,19,12, 5, 9,14,18,16)( 3, 4)( 7, 8)$ |
| $ 8, 8, 2, 2 $ | $180$ | $8$ | $( 1,13,17, 6,10,20,11,15)( 2,14,18, 5, 9,19,12,16)( 3, 7)( 4, 8)$ |
Group invariants
| Order: | $1440=2^{5} \cdot 3^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [1440, 5841] |
| Character table: |
2 5 1 4 1 1 3 5 4 4 3 3 1 3
3 2 2 1 1 . . . . . . . . .
5 1 . . . 1 1 . . . . . 1 .
1a 3a 2a 6a 5a 2b 2c 4a 4b 8a 8b 10a 4c
2P 1a 3a 1a 3a 5a 1a 1a 2c 2c 4b 4b 5a 2c
3P 1a 1a 2a 2a 5a 2b 2c 4a 4b 8a 8b 10a 4c
5P 1a 3a 2a 6a 1a 2b 2c 4a 4b 8a 8b 2b 4c
7P 1a 3a 2a 6a 5a 2b 2c 4a 4b 8a 8b 10a 4c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1
X.3 1 1 -1 -1 1 1 1 -1 1 -1 1 1 -1
X.4 1 1 1 1 1 -1 1 1 1 -1 -1 -1 -1
X.5 9 . -3 . -1 -1 1 1 1 1 1 -1 -1
X.6 9 . -3 . -1 1 1 1 1 -1 -1 1 1
X.7 9 . 3 . -1 -1 1 -1 1 -1 1 -1 1
X.8 9 . 3 . -1 1 1 -1 1 1 -1 1 -1
X.9 10 1 2 -1 . . 2 2 -2 . . . .
X.10 10 1 -2 1 . . 2 -2 -2 . . . .
X.11 16 -2 . . 1 -4 . . . . . 1 .
X.12 16 -2 . . 1 4 . . . . . -1 .
X.13 20 2 . . . . -4 . . . . . .
|