Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $2$ | |
| Group : | $C_5:C_4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,19,2,20)(3,17,4,18)(5,15,6,16)(7,14,8,13)(9,12,10,11), (1,12,2,11)(3,10,4,9)(5,7,6,8)(13,19,14,20)(15,17,16,18) | |
| $|\Aut(F/K)|$: | $20$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 10: $D_{5}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 5: $D_{5}$
Degree 10: $D_5$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 4, 4, 4, 4, 4 $ | $5$ | $4$ | $( 1, 3, 2, 4)( 5,19, 6,20)( 7,17, 8,18)( 9,15,10,16)(11,13,12,14)$ |
| $ 4, 4, 4, 4, 4 $ | $5$ | $4$ | $( 1, 4, 2, 3)( 5,20, 6,19)( 7,18, 8,17)( 9,16,10,15)(11,14,12,13)$ |
| $ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 5, 9,13,18)( 2, 6,10,14,17)( 3, 7,12,15,19)( 4, 8,11,16,20)$ |
| $ 10, 10 $ | $2$ | $10$ | $( 1, 6, 9,14,18, 2, 5,10,13,17)( 3, 8,12,16,19, 4, 7,11,15,20)$ |
| $ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 9,18, 5,13)( 2,10,17, 6,14)( 3,12,19, 7,15)( 4,11,20, 8,16)$ |
| $ 10, 10 $ | $2$ | $10$ | $( 1,10,18, 6,13, 2, 9,17, 5,14)( 3,11,19, 8,15, 4,12,20, 7,16)$ |
Group invariants
| Order: | $20=2^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [20, 1] |
| Character table: |
2 2 2 2 2 1 1 1 1
5 1 1 . . 1 1 1 1
1a 2a 4a 4b 5a 10a 5b 10b
2P 1a 1a 2a 2a 5b 5b 5a 5a
3P 1a 2a 4b 4a 5b 10b 5a 10a
5P 1a 2a 4a 4b 1a 2a 1a 2a
7P 1a 2a 4b 4a 5b 10b 5a 10a
X.1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 1 1
X.3 1 -1 A -A 1 -1 1 -1
X.4 1 -1 -A A 1 -1 1 -1
X.5 2 -2 . . B -B *B -*B
X.6 2 -2 . . *B -*B B -B
X.7 2 2 . . B B *B *B
X.8 2 2 . . *B *B B B
A = -E(4)
= -Sqrt(-1) = -i
B = E(5)^2+E(5)^3
= (-1-Sqrt(5))/2 = -1-b5
|