Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $196$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,5,8,13,11,15,17,4)(2,6,7,14,12,16,18,3)(9,19)(10,20), (1,17,11,8)(2,18,12,7)(3,16,14,6)(4,15,13,5)(9,20)(10,19), (1,2)(3,19)(4,20)(5,17,15,8)(6,18,16,7)(9,13)(10,14)(11,12) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $C_4\times C_2$ x 6, $C_2^3$ 16: $C_4\times C_2^2$ 20: $F_5$ 40: $F_{5}\times C_2$ x 3 80: 20T16 320: $(C_2^4 : C_5):C_4$ 640: $((C_2^4 : C_5):C_4)\times C_2$ x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: $F_5$
Degree 10: $F_{5}\times C_2$, $((C_2^4 : C_5):C_4)\times C_2$ x 2
Low degree siblings
20T196 x 11, 40T1028 x 6, 40T1032 x 6, 40T1048 x 3, 40T1049 x 3, 40T1052 x 3, 40T1056 x 3, 40T1058 x 4, 40T1059 x 4, 40T1146 x 6, 40T1150 x 6, 40T1152 x 6, 40T1153 x 3, 40T1155 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 1,11)( 2,12)( 3,14)( 4,13)( 5,15)( 6,16)( 7,18)( 8,17)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 3,14)( 4,13)( 9,20)(10,19)$ |
| $ 5, 5, 5, 5 $ | $64$ | $5$ | $( 1,16,20,14,17)( 2,15,19,13,18)( 3, 8,11, 6, 9)( 4, 7,12, 5,10)$ |
| $ 4, 4, 4, 4, 1, 1, 1, 1 $ | $20$ | $4$ | $( 3, 9,14,20)( 4,10,13,19)( 5, 7,15,18)( 6, 8,16,17)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $40$ | $4$ | $( 1,11)( 2,12)( 3, 9)( 4,10)( 5,18,15, 7)( 6,17,16, 8)(13,19)(14,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $20$ | $2$ | $( 3,20)( 4,19)( 5,18)( 6,17)( 7,15)( 8,16)( 9,14)(10,13)$ |
| $ 8, 8, 2, 2 $ | $40$ | $8$ | $( 1, 5, 8,13,11,15,17, 4)( 2, 6, 7,14,12,16,18, 3)( 9,19)(10,20)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $40$ | $4$ | $( 1, 5, 8, 4)( 2, 6, 7, 3)( 9,10)(11,15,17,13)(12,16,18,14)(19,20)$ |
| $ 8, 8, 2, 2 $ | $40$ | $8$ | $( 1, 7,20,13,11,18, 9, 4)( 2, 8,19,14,12,17,10, 3)( 5,16)( 6,15)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $40$ | $4$ | $( 1,18, 9,13)( 2,17,10,14)( 3,12, 8,19)( 4,11, 7,20)( 5, 6)(15,16)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 9,20)(10,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,11)( 2,12)( 3,14)( 4,13)( 5,15)( 6,16)( 7,18)( 8,17)( 9,20)(10,19)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 1,11)( 2,12)( 5,15)( 6,16)( 7,18)( 8,17)$ |
| $ 10, 10 $ | $64$ | $10$ | $( 1,16,20, 3, 8,11, 6, 9,14,17)( 2,15,19, 4, 7,12, 5,10,13,18)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $40$ | $4$ | $( 3, 9)( 4,10)( 5, 7,15,18)( 6, 8,16,17)(13,19)(14,20)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $20$ | $4$ | $( 1,11)( 2,12)( 3, 9,14,20)( 4,10,13,19)( 5,18,15, 7)( 6,17,16, 8)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $20$ | $2$ | $( 1,11)( 2,12)( 3,20)( 4,19)( 5, 7)( 6, 8)( 9,14)(10,13)(15,18)(16,17)$ |
| $ 8, 8, 2, 2 $ | $40$ | $8$ | $( 1, 5, 8,13,11,15,17, 4)( 2, 6, 7,14,12,16,18, 3)( 9,10)(19,20)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $40$ | $4$ | $( 1, 5, 8, 4)( 2, 6, 7, 3)( 9,19)(10,20)(11,15,17,13)(12,16,18,14)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $40$ | $4$ | $( 1, 7,20, 4)( 2, 8,19, 3)( 5,16)( 6,15)( 9,13,11,18)(10,14,12,17)$ |
| $ 8, 8, 2, 2 $ | $40$ | $8$ | $( 1,18, 9, 4,11, 7,20,13)( 2,17,10, 3,12, 8,19,14)( 5, 6)(15,16)$ |
| $ 8, 8, 1, 1, 1, 1 $ | $40$ | $8$ | $( 3,16,20, 8,14, 6, 9,17)( 4,15,19, 7,13, 5,10,18)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $40$ | $4$ | $( 1,11)( 2,12)( 3, 6, 9, 8)( 4, 5,10, 7)(13,15,19,18)(14,16,20,17)$ |
| $ 8, 8, 1, 1, 1, 1 $ | $40$ | $8$ | $( 3,17, 9, 6,14, 8,20,16)( 4,18,10, 5,13, 7,19,15)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $40$ | $4$ | $( 1,11)( 2,12)( 3, 8,20, 6)( 4, 7,19, 5)( 9,16,14,17)(10,15,13,18)$ |
| $ 10, 10 $ | $64$ | $10$ | $( 1, 5,20,13, 8,12,16,10, 3,18)( 2, 6,19,14, 7,11,15, 9, 4,17)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $10$ | $2$ | $( 1,12)( 2,11)( 3,13)( 4,14)( 5,16)( 6,15)( 7, 8)( 9,10)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7,17)( 8,18)( 9,10)(11,12)(13,14)(15,16)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2,11)( 3,13)( 4,14)( 5,16)( 6,15)( 7,17)( 8,18)( 9,19)(10,20)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $40$ | $4$ | $( 1, 7,11,18)( 2, 8,12,17)( 3, 5)( 4, 6)( 9,10)(13,16)(14,15)(19,20)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $20$ | $4$ | $( 1, 7,11,18)( 2, 8,12,17)( 3, 5,14,15)( 4, 6,13,16)( 9,19)(10,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $20$ | $2$ | $( 1,18)( 2,17)( 3,15)( 4,16)( 5,14)( 6,13)( 7,11)( 8,12)( 9,19)(10,20)$ |
| $ 4, 4, 4, 4, 1, 1, 1, 1 $ | $40$ | $4$ | $( 3,16, 9,17)( 4,15,10,18)( 5,19, 7,13)( 6,20, 8,14)$ |
| $ 8, 8, 2, 2 $ | $40$ | $8$ | $( 1,11)( 2,12)( 3, 6,20,17,14,16, 9, 8)( 4, 5,19,18,13,15,10, 7)$ |
| $ 4, 4, 4, 4, 1, 1, 1, 1 $ | $40$ | $4$ | $( 3,17, 9, 6)( 4,18,10, 5)( 7,19,15,13)( 8,20,16,14)$ |
| $ 8, 8, 2, 2 $ | $40$ | $8$ | $( 1,11)( 2,12)( 3, 8,20, 6,14,17, 9,16)( 4, 7,19, 5,13,18,10,15)$ |
| $ 10, 10 $ | $64$ | $10$ | $( 1, 5, 9, 4,17, 2, 6,10, 3,18)( 7,11,15,20,13, 8,12,16,19,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $10$ | $2$ | $( 1,12)( 2,11)( 3,13)( 4,14)( 5, 6)( 7, 8)( 9,10)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 2)( 3,13)( 4,14)( 5,16)( 6,15)( 7,17)( 8,18)( 9,19)(10,20)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $20$ | $4$ | $( 1, 7,11,18)( 2, 8,12,17)( 3, 5,14,15)( 4, 6,13,16)( 9,10)(19,20)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $40$ | $4$ | $( 1, 7,11,18)( 2, 8,12,17)( 3, 5)( 4, 6)( 9,19)(10,20)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $20$ | $2$ | $( 1,18)( 2,17)( 3,15)( 4,16)( 5,14)( 6,13)( 7,11)( 8,12)( 9,10)(19,20)$ |
Group invariants
| Order: | $1280=2^{8} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [1280, 1116439] |
| Character table: Data not available. |