Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $19$ | |
| Group : | $C_2^2:F_5$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,18,10,13)(2,17,9,14)(3,11,7,20)(4,12,8,19)(5,6), (1,15,10,4,17,12,5,19,14,8)(2,16,9,3,18,11,6,20,13,7) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $C_2^2:C_4$ 20: $F_5$ 40: $F_{5}\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 5: $F_5$
Degree 10: $F_{5}\times C_2$
Low degree siblings
20T19, 20T22 x 2, 40T26, 40T45, 40T55 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 4, 4, 4, 2, 1, 1 $ | $10$ | $4$ | $( 3, 8,20,15)( 4, 7,19,16)( 5,14,17,10)( 6,13,18, 9)(11,12)$ |
| $ 4, 4, 4, 4, 2, 1, 1 $ | $10$ | $4$ | $( 3,15,20, 8)( 4,16,19, 7)( 5,10,17,14)( 6, 9,18,13)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3,20)( 4,19)( 5,17)( 6,18)( 7,16)( 8,15)( 9,13)(10,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 2)( 3,19)( 4,20)( 5,18)( 6,17)( 7,15)( 8,16)( 9,14)(10,13)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $10$ | $2$ | $( 1, 3)( 2, 4)( 5,20)( 6,19)( 7,17)( 8,18)( 9,15)(10,16)(11,14)(12,13)$ |
| $ 10, 10 $ | $4$ | $10$ | $( 1, 3, 5, 7,10,11,14,16,17,20)( 2, 4, 6, 8, 9,12,13,15,18,19)$ |
| $ 4, 4, 4, 4, 4 $ | $10$ | $4$ | $( 1, 3, 9, 8)( 2, 4,10, 7)( 5,16, 6,15)(11,13,19,17)(12,14,20,18)$ |
| $ 4, 4, 4, 4, 4 $ | $10$ | $4$ | $( 1, 3,18,15)( 2, 4,17,16)( 5,11,13, 8)( 6,12,14, 7)( 9,19,10,20)$ |
| $ 10, 10 $ | $4$ | $10$ | $( 1, 4, 5, 8,10,12,14,15,17,19)( 2, 3, 6, 7, 9,11,13,16,18,20)$ |
| $ 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 5,10,14,17)( 2, 6, 9,13,18)( 3, 7,11,16,20)( 4, 8,12,15,19)$ |
| $ 10, 10 $ | $4$ | $10$ | $( 1, 6,10,13,17, 2, 5, 9,14,18)( 3, 8,11,15,20, 4, 7,12,16,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1,11)( 2,12)( 3,14)( 4,13)( 5,16)( 6,15)( 7,17)( 8,18)( 9,19)(10,20)$ |
Group invariants
| Order: | $80=2^{4} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [80, 34] |
| Character table: |
2 4 3 3 4 4 4 3 2 3 3 2 2 2 3
5 1 . . . 1 . . 1 . . 1 1 1 1
1a 4a 4b 2a 2b 2c 2d 10a 4c 4d 10b 5a 10c 2e
2P 1a 2a 2a 1a 1a 1a 1a 5a 2c 2c 5a 5a 5a 1a
3P 1a 4b 4a 2a 2b 2c 2d 10b 4d 4c 10a 5a 10c 2e
5P 1a 4a 4b 2a 2b 2c 2d 2e 4c 4d 2e 1a 2b 2e
7P 1a 4b 4a 2a 2b 2c 2d 10b 4d 4c 10a 5a 10c 2e
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1 -1 -1 1 1 -1 1 1 -1
X.3 1 -1 -1 1 1 1 1 1 -1 -1 1 1 1 1
X.4 1 1 1 1 1 1 -1 -1 -1 -1 -1 1 1 -1
X.5 1 A -A -1 1 -1 -1 1 A -A 1 1 1 1
X.6 1 -A A -1 1 -1 -1 1 -A A 1 1 1 1
X.7 1 A -A -1 1 -1 1 -1 -A A -1 1 1 -1
X.8 1 -A A -1 1 -1 1 -1 A -A -1 1 1 -1
X.9 2 . . -2 -2 2 . . . . . 2 -2 .
X.10 2 . . 2 -2 -2 . . . . . 2 -2 .
X.11 4 . . . 4 . . -1 . . -1 -1 -1 4
X.12 4 . . . 4 . . 1 . . 1 -1 -1 -4
X.13 4 . . . -4 . . B . . -B -1 1 .
X.14 4 . . . -4 . . -B . . B -1 1 .
A = -E(4)
= -Sqrt(-1) = -i
B = -E(5)+E(5)^2+E(5)^3-E(5)^4
= -Sqrt(5) = -r5
|