Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $174$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,17,6,15,4,19)(2,18,5,16,3,20)(7,14)(8,13)(9,11)(10,12), (1,18,7,13,6,16,4,12,9,20)(2,17,8,14,5,15,3,11,10,19), (1,6,7)(2,5,8)(11,16,19,12,15,20)(13,14)(17,18) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 2, $C_2^3$ 16: $D_4\times C_2$ 120: $S_5$ 240: $S_5\times C_2$ x 3 480: 20T117 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 5: $S_5$
Degree 10: $S_5\times C_2$
Low degree siblings
20T174 x 3, 24T2665 x 4, 40T896 x 4, 40T897 x 4, 40T905 x 2, 40T917 x 2, 40T918 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1,16)( 2,15)( 3,17)( 4,18)( 5,19)( 6,20)( 7,12)( 8,11)( 9,13)(10,14)$ |
| $ 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,15, 2,16)( 3,18, 4,17)( 5,20, 6,19)( 7,11, 8,12)( 9,14,10,13)$ |
| $ 4, 4, 4, 4, 4 $ | $20$ | $4$ | $( 1,17, 2,18)( 3,16, 4,15)( 5,20, 6,19)( 7,11, 8,12)( 9,14,10,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $20$ | $2$ | $( 1,18)( 2,17)( 3,15)( 4,16)( 5,19)( 6,20)( 7,12)( 8,11)( 9,13)(10,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $20$ | $2$ | $( 1, 3)( 2, 4)( 5, 6)( 7, 8)( 9,10)(15,17)(16,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $10$ | $2$ | $( 1, 3)( 2, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,18)(16,17)(19,20)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 1, 4)( 2, 3)(15,17)(16,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $15$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,10)(11,20)(12,19)(13,14)(15,18)(16,17)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $30$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,10)(11,19)(12,20)(15,17)(16,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $15$ | $2$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)(11,19)(12,20)(15,17)(16,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $30$ | $2$ | $( 1,17)( 2,18)( 3,16)( 4,15)( 5,12)( 6,11)( 7,19)( 8,20)( 9,14)(10,13)$ |
| $ 4, 4, 4, 4, 4 $ | $30$ | $4$ | $( 1,18, 2,17)( 3,15, 4,16)( 5,11, 6,12)( 7,20, 8,19)( 9,13,10,14)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1 $ | $20$ | $3$ | $( 1, 4, 6)( 2, 3, 5)(15,17,19)(16,18,20)$ |
| $ 6, 3, 3, 2, 2, 1, 1, 1, 1 $ | $40$ | $6$ | $( 1, 4, 6)( 2, 3, 5)(11,12)(13,14)(15,18,19,16,17,20)$ |
| $ 6, 6, 2, 2, 2, 2 $ | $20$ | $6$ | $( 1, 3, 6, 2, 4, 5)( 7, 8)( 9,10)(11,12)(13,14)(15,18,19,16,17,20)$ |
| $ 6, 6, 2, 2, 2, 2 $ | $40$ | $6$ | $( 1,18, 6,16, 4,20)( 2,17, 5,15, 3,19)( 7,12)( 8,11)( 9,13)(10,14)$ |
| $ 12, 4, 4 $ | $40$ | $12$ | $( 1,17, 5,16, 4,19, 2,18, 6,15, 3,20)( 7,11, 8,12)( 9,14,10,13)$ |
| $ 3, 3, 3, 3, 2, 2, 2, 2 $ | $20$ | $6$ | $( 1, 4, 6)( 2, 3, 5)( 7, 9)( 8,10)(11,14)(12,13)(15,17,19)(16,18,20)$ |
| $ 6, 3, 3, 2, 2, 2, 2 $ | $40$ | $6$ | $( 1, 4, 6)( 2, 3, 5)( 7, 9)( 8,10)(11,13)(12,14)(15,18,19,16,17,20)$ |
| $ 6, 6, 2, 2, 2, 2 $ | $20$ | $6$ | $( 1, 3, 6, 2, 4, 5)( 7,10)( 8, 9)(11,13)(12,14)(15,18,19,16,17,20)$ |
| $ 6, 6, 2, 2, 2, 2 $ | $40$ | $6$ | $( 1,18, 6,16, 4,20)( 2,17, 5,15, 3,19)( 7,13)( 8,14)( 9,12)(10,11)$ |
| $ 12, 4, 4 $ | $40$ | $12$ | $( 1,17, 5,16, 4,19, 2,18, 6,15, 3,20)( 7,14, 8,13)( 9,11,10,12)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $30$ | $4$ | $( 1, 3, 6, 8)( 2, 4, 5, 7)( 9,10)(11,16,17,20)(12,15,18,19)(13,14)$ |
| $ 4, 4, 4, 4, 2, 1, 1 $ | $60$ | $4$ | $( 1, 3, 6, 8)( 2, 4, 5, 7)( 9,10)(11,15,17,19)(12,16,18,20)$ |
| $ 4, 4, 4, 4, 1, 1, 1, 1 $ | $30$ | $4$ | $( 1, 4, 6, 7)( 2, 3, 5, 8)(11,15,17,19)(12,16,18,20)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $60$ | $4$ | $( 1,17, 6,11)( 2,18, 5,12)( 3,20, 8,16)( 4,19, 7,15)( 9,14)(10,13)$ |
| $ 4, 4, 4, 4, 4 $ | $60$ | $4$ | $( 1,18, 5,11)( 2,17, 6,12)( 3,19, 7,16)( 4,20, 8,15)( 9,13,10,14)$ |
| $ 10, 10 $ | $24$ | $10$ | $( 1, 3, 6, 8, 9, 2, 4, 5, 7,10)(11,13,15,18,19,12,14,16,17,20)$ |
| $ 10, 5, 5 $ | $48$ | $10$ | $( 1, 3, 6, 8, 9, 2, 4, 5, 7,10)(11,14,15,17,19)(12,13,16,18,20)$ |
| $ 5, 5, 5, 5 $ | $24$ | $5$ | $( 1, 4, 6, 7, 9)( 2, 3, 5, 8,10)(11,14,15,17,19)(12,13,16,18,20)$ |
| $ 10, 10 $ | $48$ | $10$ | $( 1,17, 6,11, 9,15, 4,19, 7,14)( 2,18, 5,12,10,16, 3,20, 8,13)$ |
| $ 20 $ | $48$ | $20$ | $( 1,18, 5,11, 9,16, 3,19, 7,13, 2,17, 6,12,10,15, 4,20, 8,14)$ |
Group invariants
| Order: | $960=2^{6} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [960, 10871] |
| Character table: Data not available. |