Properties

Label 20T16
Degree $20$
Order $80$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_2^2\times F_5$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(20, 16);
 

Group action invariants

Degree $n$:  $20$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $16$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $C_2^2\times F_5$
Parity:  $1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $4$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,16,14,20)(2,15,13,19)(3,10,11,5)(4,9,12,6)(7,17)(8,18), (1,9,14,6)(2,10,13,5)(3,15,11,19)(4,16,12,20)(7,8)(17,18), (1,16,10,3,17,11,5,20,14,7)(2,15,9,4,18,12,6,19,13,8)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 7
$4$:  $C_4$ x 4, $C_2^2$ x 7
$8$:  $C_4\times C_2$ x 6, $C_2^3$
$16$:  $C_4\times C_2^2$
$20$:  $F_5$
$40$:  $F_{5}\times C_2$ x 3

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$

Degree 5: $F_5$

Degree 10: $F_{5}\times C_2$ x 3

Low degree siblings

20T16 x 3, 40T44 x 3, 40T56

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{20}$ $1$ $1$ $0$ $()$
2A $2^{10}$ $1$ $2$ $10$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$
2B $2^{10}$ $1$ $2$ $10$ $( 1,12)( 2,11)( 3,13)( 4,14)( 5,15)( 6,16)( 7,18)( 8,17)( 9,20)(10,19)$
2C $2^{10}$ $1$ $2$ $10$ $( 1,11)( 2,12)( 3,14)( 4,13)( 5,16)( 6,15)( 7,17)( 8,18)( 9,19)(10,20)$
2D $2^{10}$ $5$ $2$ $10$ $( 1, 2)( 3,19)( 4,20)( 5,18)( 6,17)( 7,15)( 8,16)( 9,14)(10,13)(11,12)$
2E $2^{8},1^{4}$ $5$ $2$ $8$ $( 1,14)( 2,13)( 3,11)( 4,12)( 5,10)( 6, 9)(15,19)(16,20)$
2F $2^{10}$ $5$ $2$ $10$ $( 1,12)( 2,11)( 3, 9)( 4,10)( 5, 8)( 6, 7)(13,20)(14,19)(15,17)(16,18)$
2G $2^{10}$ $5$ $2$ $10$ $( 1, 3)( 2, 4)( 5,20)( 6,19)( 7,17)( 8,18)( 9,15)(10,16)(11,14)(12,13)$
4A1 $4^{4},2^{2}$ $5$ $4$ $14$ $( 1,16,14,20)( 2,15,13,19)( 3,10,11, 5)( 4, 9,12, 6)( 7,17)( 8,18)$
4A-1 $4^{4},2^{2}$ $5$ $4$ $14$ $( 1, 6,17,13)( 2, 5,18,14)( 3,12,16, 8)( 4,11,15, 7)( 9,10)(19,20)$
4B1 $4^{4},2^{2}$ $5$ $4$ $14$ $( 1,19, 5, 8)( 2,20, 6, 7)( 3,13)( 4,14)( 9,16,18,11)(10,15,17,12)$
4B-1 $4^{4},2^{2}$ $5$ $4$ $14$ $( 1,20,14,16)( 2,19,13,15)( 3, 5,11,10)( 4, 6,12, 9)( 7,17)( 8,18)$
4C1 $4^{4},1^{4}$ $5$ $4$ $12$ $( 1,10,14, 5)( 2, 9,13, 6)( 3,16,11,20)( 4,15,12,19)$
4C-1 $4^{4},1^{4}$ $5$ $4$ $12$ $( 1, 5,14,10)( 2, 6,13, 9)( 3,20,11,16)( 4,19,12,15)$
4D1 $4^{4},2^{2}$ $5$ $4$ $14$ $( 1,15,17, 4)( 2,16,18, 3)( 5, 8,14,12)( 6, 7,13,11)( 9,20)(10,19)$
4D-1 $4^{4},2^{2}$ $5$ $4$ $14$ $( 1, 9, 5,18)( 2,10, 6,17)( 3, 4)( 7,12,20,15)( 8,11,19,16)(13,14)$
5A $5^{4}$ $4$ $5$ $16$ $( 1, 5,10,14,17)( 2, 6, 9,13,18)( 3, 7,11,16,20)( 4, 8,12,15,19)$
10A $10^{2}$ $4$ $10$ $18$ $( 1,13, 5,18,10, 2,14, 6,17, 9)( 3,15, 7,19,11, 4,16, 8,20,12)$
10B $10^{2}$ $4$ $10$ $18$ $( 1, 4, 5, 8,10,12,14,15,17,19)( 2, 3, 6, 7, 9,11,13,16,18,20)$
10C $10^{2}$ $4$ $10$ $18$ $( 1,16,10, 3,17,11, 5,20,14, 7)( 2,15, 9, 4,18,12, 6,19,13, 8)$

Malle's constant $a(G)$:     $1/8$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $80=2^{4} \cdot 5$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  80.50
magma: IdentifyGroup(G);
 
Character table:

1A 2A 2B 2C 2D 2E 2F 2G 4A1 4A-1 4B1 4B-1 4C1 4C-1 4D1 4D-1 5A 10A 10B 10C
Size 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4
2 P 1A 1A 1A 1A 1A 1A 1A 1A 2G 2G 2G 2G 2G 2G 2G 2G 5A 5A 5A 5A
5 P 1A 2A 2B 2C 2F 2G 2D 2E 4A-1 4B1 4D-1 4A1 4C1 4C-1 4D1 4B-1 1A 2A 2B 2C
Type
80.50.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
80.50.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
80.50.1c R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
80.50.1d R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
80.50.1e R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
80.50.1f R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
80.50.1g R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
80.50.1h R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
80.50.1i1 C 1 1 1 1 1 1 1 1 i i i i i i i i 1 1 1 1
80.50.1i2 C 1 1 1 1 1 1 1 1 i i i i i i i i 1 1 1 1
80.50.1j1 C 1 1 1 1 1 1 1 1 i i i i i i i i 1 1 1 1
80.50.1j2 C 1 1 1 1 1 1 1 1 i i i i i i i i 1 1 1 1
80.50.1k1 C 1 1 1 1 1 1 1 1 i i i i i i i i 1 1 1 1
80.50.1k2 C 1 1 1 1 1 1 1 1 i i i i i i i i 1 1 1 1
80.50.1l1 C 1 1 1 1 1 1 1 1 i i i i i i i i 1 1 1 1
80.50.1l2 C 1 1 1 1 1 1 1 1 i i i i i i i i 1 1 1 1
80.50.4a R 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
80.50.4b R 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
80.50.4c R 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
80.50.4d R 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

magma: CharacterTable(G);