Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $16$ | |
| Group : | $C_2^2\times F_5$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,16,14,20)(2,15,13,19)(3,10,11,5)(4,9,12,6)(7,17)(8,18), (1,9,14,6)(2,10,13,5)(3,15,11,19)(4,16,12,20)(7,8)(17,18), (1,16,10,3,17,11,5,20,14,7)(2,15,9,4,18,12,6,19,13,8) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $C_4\times C_2$ x 6, $C_2^3$ 16: $C_4\times C_2^2$ 20: $F_5$ 40: $F_{5}\times C_2$ x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 5: $F_5$
Degree 10: $F_{5}\times C_2$ x 3
Low degree siblings
20T16 x 3, 40T44 x 3, 40T56Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 4, 4, 4, 1, 1, 1, 1 $ | $5$ | $4$ | $( 3, 7,20,16)( 4, 8,19,15)( 5,14,17,10)( 6,13,18, 9)$ |
| $ 4, 4, 4, 4, 1, 1, 1, 1 $ | $5$ | $4$ | $( 3,16,20, 7)( 4,15,19, 8)( 5,10,17,14)( 6, 9,18,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3,20)( 4,19)( 5,17)( 6,18)( 7,16)( 8,15)( 9,13)(10,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $5$ | $4$ | $( 1, 2)( 3, 8,20,15)( 4, 7,19,16)( 5,13,17, 9)( 6,14,18,10)(11,12)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $5$ | $4$ | $( 1, 2)( 3,15,20, 8)( 4,16,19, 7)( 5, 9,17,13)( 6,10,18,14)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 2)( 3,19)( 4,20)( 5,18)( 6,17)( 7,15)( 8,16)( 9,14)(10,13)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 3)( 2, 4)( 5,20)( 6,19)( 7,17)( 8,18)( 9,15)(10,16)(11,14)(12,13)$ |
| $ 10, 10 $ | $4$ | $10$ | $( 1, 3, 5, 7,10,11,14,16,17,20)( 2, 4, 6, 8, 9,12,13,15,18,19)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $5$ | $4$ | $( 1, 3,10, 7)( 2, 4, 9, 8)( 5,16)( 6,15)(11,14,20,17)(12,13,19,18)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $5$ | $4$ | $( 1, 3,17,16)( 2, 4,18,15)( 5,11,14, 7)( 6,12,13, 8)( 9,19)(10,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 4)( 2, 3)( 5,19)( 6,20)( 7,18)( 8,17)( 9,16)(10,15)(11,13)(12,14)$ |
| $ 10, 10 $ | $4$ | $10$ | $( 1, 4, 5, 8,10,12,14,15,17,19)( 2, 3, 6, 7, 9,11,13,16,18,20)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $5$ | $4$ | $( 1, 4,10, 8)( 2, 3, 9, 7)( 5,15)( 6,16)(11,13,20,18)(12,14,19,17)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $5$ | $4$ | $( 1, 4,17,15)( 2, 3,18,16)( 5,12,14, 8)( 6,11,13, 7)( 9,20)(10,19)$ |
| $ 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 5,10,14,17)( 2, 6, 9,13,18)( 3, 7,11,16,20)( 4, 8,12,15,19)$ |
| $ 10, 10 $ | $4$ | $10$ | $( 1, 6,10,13,17, 2, 5, 9,14,18)( 3, 8,11,15,20, 4, 7,12,16,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,11)( 2,12)( 3,14)( 4,13)( 5,16)( 6,15)( 7,17)( 8,18)( 9,19)(10,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2,11)( 3,13)( 4,14)( 5,15)( 6,16)( 7,18)( 8,17)( 9,20)(10,19)$ |
Group invariants
| Order: | $80=2^{4} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [80, 50] |
| Character table: |
2 4 4 4 4 4 4 4 4 4 2 4 4 4 2 4 4 2 2 4 4
5 1 . . . 1 . . . . 1 . . . 1 . . 1 1 1 1
1a 4a 4b 2a 2b 4c 4d 2c 2d 10a 4e 4f 2e 10b 4g 4h 5a 10c 2f 2g
2P 1a 2a 2a 1a 1a 2a 2a 1a 1a 5a 2a 2a 1a 5a 2a 2a 5a 5a 1a 1a
3P 1a 4b 4a 2a 2b 4d 4c 2c 2d 10a 4f 4e 2e 10b 4h 4g 5a 10c 2f 2g
5P 1a 4a 4b 2a 2b 4c 4d 2c 2d 2f 4e 4f 2e 2g 4g 4h 1a 2b 2f 2g
7P 1a 4b 4a 2a 2b 4d 4c 2c 2d 10a 4f 4e 2e 10b 4h 4g 5a 10c 2f 2g
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 -1 1 1 -1 -1 -1 1 1 1 1 -1 -1 1 -1 -1 1
X.3 1 -1 -1 1 -1 1 1 -1 1 1 -1 -1 -1 -1 1 1 1 -1 1 -1
X.4 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1
X.5 1 -1 -1 1 1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 1 1 1 1
X.6 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 -1 -1 1
X.7 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 -1 1 -1
X.8 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1
X.9 1 A -A -1 -1 -A A 1 -1 1 A -A 1 -1 -A A 1 -1 1 -1
X.10 1 -A A -1 -1 A -A 1 -1 1 -A A 1 -1 A -A 1 -1 1 -1
X.11 1 A -A -1 -1 -A A 1 1 -1 -A A -1 1 A -A 1 -1 -1 1
X.12 1 -A A -1 -1 A -A 1 1 -1 A -A -1 1 -A A 1 -1 -1 1
X.13 1 A -A -1 1 A -A -1 -1 1 A -A -1 1 A -A 1 1 1 1
X.14 1 -A A -1 1 -A A -1 -1 1 -A A -1 1 -A A 1 1 1 1
X.15 1 A -A -1 1 A -A -1 1 -1 -A A 1 -1 -A A 1 1 -1 -1
X.16 1 -A A -1 1 -A A -1 1 -1 A -A 1 -1 A -A 1 1 -1 -1
X.17 4 . . . -4 . . . . -1 . . . 1 . . -1 1 4 -4
X.18 4 . . . -4 . . . . 1 . . . -1 . . -1 1 -4 4
X.19 4 . . . 4 . . . . -1 . . . -1 . . -1 -1 4 4
X.20 4 . . . 4 . . . . 1 . . . 1 . . -1 -1 -4 -4
A = -E(4)
= -Sqrt(-1) = -i
|