Show commands:
Magma
magma: G := TransitiveGroup(20, 16);
Group action invariants
Degree $n$: | $20$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $16$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_2^2\times F_5$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $4$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,16,14,20)(2,15,13,19)(3,10,11,5)(4,9,12,6)(7,17)(8,18), (1,9,14,6)(2,10,13,5)(3,15,11,19)(4,16,12,20)(7,8)(17,18), (1,16,10,3,17,11,5,20,14,7)(2,15,9,4,18,12,6,19,13,8) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_4$ x 4, $C_2^2$ x 7 $8$: $C_4\times C_2$ x 6, $C_2^3$ $16$: $C_4\times C_2^2$ $20$: $F_5$ $40$: $F_{5}\times C_2$ x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 5: $F_5$
Degree 10: $F_{5}\times C_2$ x 3
Low degree siblings
20T16 x 3, 40T44 x 3, 40T56Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{20}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{10}$ | $1$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
2B | $2^{10}$ | $1$ | $2$ | $10$ | $( 1,12)( 2,11)( 3,13)( 4,14)( 5,15)( 6,16)( 7,18)( 8,17)( 9,20)(10,19)$ |
2C | $2^{10}$ | $1$ | $2$ | $10$ | $( 1,11)( 2,12)( 3,14)( 4,13)( 5,16)( 6,15)( 7,17)( 8,18)( 9,19)(10,20)$ |
2D | $2^{10}$ | $5$ | $2$ | $10$ | $( 1, 2)( 3,19)( 4,20)( 5,18)( 6,17)( 7,15)( 8,16)( 9,14)(10,13)(11,12)$ |
2E | $2^{8},1^{4}$ | $5$ | $2$ | $8$ | $( 1,14)( 2,13)( 3,11)( 4,12)( 5,10)( 6, 9)(15,19)(16,20)$ |
2F | $2^{10}$ | $5$ | $2$ | $10$ | $( 1,12)( 2,11)( 3, 9)( 4,10)( 5, 8)( 6, 7)(13,20)(14,19)(15,17)(16,18)$ |
2G | $2^{10}$ | $5$ | $2$ | $10$ | $( 1, 3)( 2, 4)( 5,20)( 6,19)( 7,17)( 8,18)( 9,15)(10,16)(11,14)(12,13)$ |
4A1 | $4^{4},2^{2}$ | $5$ | $4$ | $14$ | $( 1,16,14,20)( 2,15,13,19)( 3,10,11, 5)( 4, 9,12, 6)( 7,17)( 8,18)$ |
4A-1 | $4^{4},2^{2}$ | $5$ | $4$ | $14$ | $( 1, 6,17,13)( 2, 5,18,14)( 3,12,16, 8)( 4,11,15, 7)( 9,10)(19,20)$ |
4B1 | $4^{4},2^{2}$ | $5$ | $4$ | $14$ | $( 1,19, 5, 8)( 2,20, 6, 7)( 3,13)( 4,14)( 9,16,18,11)(10,15,17,12)$ |
4B-1 | $4^{4},2^{2}$ | $5$ | $4$ | $14$ | $( 1,20,14,16)( 2,19,13,15)( 3, 5,11,10)( 4, 6,12, 9)( 7,17)( 8,18)$ |
4C1 | $4^{4},1^{4}$ | $5$ | $4$ | $12$ | $( 1,10,14, 5)( 2, 9,13, 6)( 3,16,11,20)( 4,15,12,19)$ |
4C-1 | $4^{4},1^{4}$ | $5$ | $4$ | $12$ | $( 1, 5,14,10)( 2, 6,13, 9)( 3,20,11,16)( 4,19,12,15)$ |
4D1 | $4^{4},2^{2}$ | $5$ | $4$ | $14$ | $( 1,15,17, 4)( 2,16,18, 3)( 5, 8,14,12)( 6, 7,13,11)( 9,20)(10,19)$ |
4D-1 | $4^{4},2^{2}$ | $5$ | $4$ | $14$ | $( 1, 9, 5,18)( 2,10, 6,17)( 3, 4)( 7,12,20,15)( 8,11,19,16)(13,14)$ |
5A | $5^{4}$ | $4$ | $5$ | $16$ | $( 1, 5,10,14,17)( 2, 6, 9,13,18)( 3, 7,11,16,20)( 4, 8,12,15,19)$ |
10A | $10^{2}$ | $4$ | $10$ | $18$ | $( 1,13, 5,18,10, 2,14, 6,17, 9)( 3,15, 7,19,11, 4,16, 8,20,12)$ |
10B | $10^{2}$ | $4$ | $10$ | $18$ | $( 1, 4, 5, 8,10,12,14,15,17,19)( 2, 3, 6, 7, 9,11,13,16,18,20)$ |
10C | $10^{2}$ | $4$ | $10$ | $18$ | $( 1,16,10, 3,17,11, 5,20,14, 7)( 2,15, 9, 4,18,12, 6,19,13, 8)$ |
Malle's constant $a(G)$: $1/8$
magma: ConjugacyClasses(G);
Group invariants
Order: | $80=2^{4} \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 80.50 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A1 | 4A-1 | 4B1 | 4B-1 | 4C1 | 4C-1 | 4D1 | 4D-1 | 5A | 10A | 10B | 10C | ||
Size | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 4 | 4 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2G | 2G | 2G | 2G | 2G | 2G | 2G | 2G | 5A | 5A | 5A | 5A | |
5 P | 1A | 2A | 2B | 2C | 2F | 2G | 2D | 2E | 4A-1 | 4B1 | 4D-1 | 4A1 | 4C1 | 4C-1 | 4D1 | 4B-1 | 1A | 2A | 2B | 2C | |
Type | |||||||||||||||||||||
80.50.1a | R | ||||||||||||||||||||
80.50.1b | R | ||||||||||||||||||||
80.50.1c | R | ||||||||||||||||||||
80.50.1d | R | ||||||||||||||||||||
80.50.1e | R | ||||||||||||||||||||
80.50.1f | R | ||||||||||||||||||||
80.50.1g | R | ||||||||||||||||||||
80.50.1h | R | ||||||||||||||||||||
80.50.1i1 | C | ||||||||||||||||||||
80.50.1i2 | C | ||||||||||||||||||||
80.50.1j1 | C | ||||||||||||||||||||
80.50.1j2 | C | ||||||||||||||||||||
80.50.1k1 | C | ||||||||||||||||||||
80.50.1k2 | C | ||||||||||||||||||||
80.50.1l1 | C | ||||||||||||||||||||
80.50.1l2 | C | ||||||||||||||||||||
80.50.4a | R | ||||||||||||||||||||
80.50.4b | R | ||||||||||||||||||||
80.50.4c | R | ||||||||||||||||||||
80.50.4d | R |
magma: CharacterTable(G);