Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $15$ | |
| Group : | $A_5$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,17)(2,18)(3,4)(5,7)(6,8)(9,20)(10,19)(11,14)(12,13)(15,16), (1,6,10,13,17)(2,5,9,14,18)(3,8,12,15,20)(4,7,11,16,19) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 5: $A_5$
Degree 10: $A_{5}$
Low degree siblings
5T4, 6T12, 10T7, 12T33, 15T5, 30T9Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1 $ | $20$ | $3$ | $( 3, 7, 9)( 4, 8,10)( 5,11,18)( 6,12,17)(13,15,19)(14,16,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $15$ | $2$ | $( 1, 2)( 3,13)( 4,14)( 5, 6)( 7,19)( 8,20)( 9,15)(10,16)(11,17)(12,18)$ |
| $ 5, 5, 5, 5 $ | $12$ | $5$ | $( 1, 4, 6,12,15)( 2, 3, 5,11,16)( 7,17,14,10,19)( 8,18,13, 9,20)$ |
| $ 5, 5, 5, 5 $ | $12$ | $5$ | $( 1, 4,18,11,13)( 2, 3,17,12,14)( 5,16, 8,19, 9)( 6,15, 7,20,10)$ |
Group invariants
| Order: | $60=2^{2} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [60, 5] |
| Character table: |
2 2 . 2 . .
3 1 1 . . .
5 1 . . 1 1
1a 3a 2a 5a 5b
2P 1a 3a 1a 5b 5a
3P 1a 1a 2a 5b 5a
5P 1a 3a 2a 1a 1a
X.1 1 1 1 1 1
X.2 3 . -1 A *A
X.3 3 . -1 *A A
X.4 4 1 . -1 -1
X.5 5 -1 1 . .
A = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5
|