Properties

Label 20T15
Degree $20$
Order $60$
Cyclic no
Abelian no
Solvable no
Primitive no
$p$-group no
Group: $A_5$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(20, 15);
 

Group action invariants

Degree $n$:  $20$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $15$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $A_5$
Parity:  $1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $2$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,17)(2,18)(3,4)(5,7)(6,8)(9,20)(10,19)(11,14)(12,13)(15,16), (1,6,10,13,17)(2,5,9,14,18)(3,8,12,15,20)(4,7,11,16,19)
magma: Generators(G);
 

Low degree resolvents

none

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $A_5$

Degree 10: $A_{5}$

Low degree siblings

5T4, 6T12, 10T7, 12T33, 15T5, 30T9

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{20}$ $1$ $1$ $0$ $()$
2A $2^{10}$ $15$ $2$ $10$ $( 1, 9)( 2,10)( 3, 7)( 4, 8)( 5, 6)(11,20)(12,19)(13,18)(14,17)(15,16)$
3A $3^{6},1^{2}$ $20$ $3$ $12$ $( 1, 3, 7)( 2, 4, 8)( 5,14,19)( 6,13,20)(11,15,17)(12,16,18)$
5A1 $5^{4}$ $12$ $5$ $16$ $( 1,11, 4,13,18)( 2,12, 3,14,17)( 5,19,16, 9, 8)( 6,20,15,10, 7)$
5A2 $5^{4}$ $12$ $5$ $16$ $( 1,17, 8,19,12)( 2,18, 7,20,11)( 3, 5,14,15,10)( 4, 6,13,16, 9)$

Malle's constant $a(G)$:     $1/10$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $60=2^{2} \cdot 3 \cdot 5$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  no
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  60.5
magma: IdentifyGroup(G);
 
Character table:

1A 2A 3A 5A1 5A2
Size 1 15 20 12 12
2 P 1A 1A 3A 5A2 5A1
3 P 1A 2A 1A 5A2 5A1
5 P 1A 2A 3A 1A 1A
Type
60.5.1a R 1 1 1 1 1
60.5.3a1 R 3 1 0 ζ51ζ5 ζ52ζ52
60.5.3a2 R 3 1 0 ζ52ζ52 ζ51ζ5
60.5.4a R 4 0 1 1 1
60.5.5a R 5 1 1 0 0

magma: CharacterTable(G);