Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $145$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,6,16,17)(2,5,15,18)(7,9,20,11)(8,10,19,12), (1,18)(2,17)(3,7,19,14)(4,8,20,13)(5,9,15,11)(6,10,16,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: None
Degree 10: $S_{6}$
Low degree siblings
6T16 x 2, 10T32, 12T183 x 2, 15T28 x 2, 20T149 x 2, 30T164 x 2, 30T166 x 2, 30T176 x 2, 36T1252, 40T589, 40T592 x 2, 45T96Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $45$ | $2$ | $( 5,12)( 6,11)( 7, 9)( 8,10)(13,15)(14,16)(17,20)(18,19)$ |
| $ 4, 4, 4, 4, 1, 1, 1, 1 $ | $90$ | $4$ | $( 5,18,12,19)( 6,17,11,20)( 7,16, 9,14)( 8,15,10,13)$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1 $ | $40$ | $3$ | $( 3, 5,12)( 4, 6,11)( 7,17,14)( 8,18,13)( 9,16,20)(10,15,19)$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1 $ | $40$ | $3$ | $( 3, 8,10)( 4, 7, 9)( 5,18,15)( 6,17,16)(11,14,20)(12,13,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $15$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7,15)( 8,16)( 9,13)(10,14)(11,12)(17,19)(18,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $15$ | $2$ | $( 1, 2)( 3, 4)( 5,17)( 6,18)( 7,10)( 8, 9)(11,19)(12,20)(13,14)(15,16)$ |
| $ 6, 6, 6, 2 $ | $120$ | $6$ | $( 1, 2)( 3, 6,10,16, 8,17)( 4, 5, 9,15, 7,18)(11,13,20,12,14,19)$ |
| $ 6, 6, 6, 2 $ | $120$ | $6$ | $( 1, 2)( 3, 6,12, 4, 5,11)( 7,19,14,15,17,10)( 8,20,13,16,18, 9)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $90$ | $4$ | $( 1, 3)( 2, 4)( 5,17,12,20)( 6,18,11,19)( 7,13, 9,15)( 8,14,10,16)$ |
| $ 5, 5, 5, 5 $ | $144$ | $5$ | $( 1, 4, 6, 7,17)( 2, 3, 5, 8,18)( 9,14,20,11,16)(10,13,19,12,15)$ |
Group invariants
| Order: | $720=2^{4} \cdot 3^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [720, 763] |
| Character table: |
2 4 4 3 1 1 4 4 1 1 3 .
3 2 . . 2 2 1 1 1 1 . .
5 1 . . . . . . . . . 1
1a 2a 4a 3a 3b 2b 2c 6a 6b 4b 5a
2P 1a 1a 2a 3a 3b 1a 1a 3b 3a 2a 5a
3P 1a 2a 4a 1a 1a 2b 2c 2c 2b 4b 5a
5P 1a 2a 4a 3a 3b 2b 2c 6a 6b 4b 1a
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 -1 -1 -1 -1 -1 1
X.3 5 1 -1 2 -1 -3 1 1 . -1 .
X.4 5 1 -1 2 -1 3 -1 -1 . 1 .
X.5 5 1 -1 -1 2 -1 3 . -1 1 .
X.6 5 1 -1 -1 2 1 -3 . 1 -1 .
X.7 9 1 1 . . -3 -3 . . 1 -1
X.8 9 1 1 . . 3 3 . . -1 -1
X.9 10 -2 . 1 1 -2 2 -1 1 . .
X.10 10 -2 . 1 1 2 -2 1 -1 . .
X.11 16 . . -2 -2 . . . . . 1
|