Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $140$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,6,9,13,18,11,16,19,3,8)(2,5,10,14,17,12,15,20,4,7), (1,7,16,10,11,17,6,20)(2,8,15,9,12,18,5,19)(3,4)(13,14) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $C_4\times C_2$ 20: $F_5$ 40: $F_{5}\times C_2$ 320: $(C_2^4 : C_5):C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: $F_5$
Degree 10: $F_5$, $((C_2^4 : C_5):C_4)\times C_2$ x 2
Low degree siblings
10T29 x 2, 20T129, 20T131 x 2, 20T132, 20T133, 20T134, 20T135, 20T137 x 2, 32T34608 x 2, 40T460, 40T462, 40T473, 40T474, 40T475, 40T476, 40T487, 40T488, 40T489, 40T490, 40T557, 40T558 x 2, 40T561, 40T562, 40T563, 40T564, 40T565, 40T566, 40T567 x 2, 40T576, 40T577, 40T578, 40T579, 40T586Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 5,15)( 6,16)( 9,19)(10,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3,13)( 4,14)( 5,15)( 6,16)( 7,17)( 8,18)( 9,19)(10,20)$ |
| $ 5, 5, 5, 5 $ | $64$ | $5$ | $( 1, 9,18,16, 3)( 2,10,17,15, 4)( 5,14,12,20, 7)( 6,13,11,19, 8)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 9,19)(10,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 3,13)( 4,14)( 5,15)( 6,16)( 9,19)(10,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,11)( 2,12)( 3,13)( 4,14)( 5,15)( 6,16)( 7,17)( 8,18)( 9,19)(10,20)$ |
| $ 10, 10 $ | $64$ | $10$ | $( 1, 9, 8, 6,13,11,19,18,16, 3)( 2,10, 7, 5,14,12,20,17,15, 4)$ |
| $ 4, 4, 4, 4, 1, 1, 1, 1 $ | $20$ | $4$ | $( 1,19,11, 9)( 2,20,12,10)( 3,18,13, 8)( 4,17,14, 7)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $40$ | $4$ | $( 1, 9)( 2,10)( 3,18,13, 8)( 4,17,14, 7)( 5,15)( 6,16)(11,19)(12,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $20$ | $2$ | $( 1, 9)( 2,10)( 3,18)( 4,17)( 7,14)( 8,13)(11,19)(12,20)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $40$ | $4$ | $( 1, 9)( 2,10)( 3,18,13, 8)( 4,17,14, 7)(11,19)(12,20)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $20$ | $4$ | $( 1,19,11, 9)( 2,20,12,10)( 3,18,13, 8)( 4,17,14, 7)( 5,15)( 6,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $20$ | $2$ | $( 1, 9)( 2,10)( 3,18)( 4,17)( 5,15)( 6,16)( 7,14)( 8,13)(11,19)(12,20)$ |
| $ 8, 8, 2, 2 $ | $40$ | $8$ | $( 1, 7,16,10,11,17, 6,20)( 2, 8,15, 9,12,18, 5,19)( 3, 4)(13,14)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $40$ | $4$ | $( 1, 7,16,20)( 2, 8,15,19)( 3,14)( 4,13)( 5, 9,12,18)( 6,10,11,17)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $40$ | $4$ | $( 1, 7,16,20)( 2, 8,15,19)( 3, 4)( 5, 9,12,18)( 6,10,11,17)(13,14)$ |
| $ 8, 8, 2, 2 $ | $40$ | $8$ | $( 1, 7,16,10,11,17, 6,20)( 2, 8,15, 9,12,18, 5,19)( 3,14)( 4,13)$ |
| $ 8, 8, 2, 2 $ | $40$ | $8$ | $( 1, 4,18, 5,11,14, 8,15)( 2, 3,17, 6,12,13, 7,16)( 9,10)(19,20)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $40$ | $4$ | $( 1, 4,18,15)( 2, 3,17,16)( 5,11,14, 8)( 6,12,13, 7)( 9,20)(10,19)$ |
| $ 8, 8, 2, 2 $ | $40$ | $8$ | $( 1, 4,18, 5,11,14, 8,15)( 2, 3,17, 6,12,13, 7,16)( 9,20)(10,19)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $40$ | $4$ | $( 1, 4,18,15)( 2, 3,17,16)( 5,11,14, 8)( 6,12,13, 7)( 9,10)(19,20)$ |
Group invariants
| Order: | $640=2^{7} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [640, 21536] |
| Character table: Data not available. |