Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $138$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,20,2,19)(3,18,4,17)(5,11)(6,12)(7,9)(8,10)(13,16)(14,15), (1,15,17,6,12,4,14,20,7,10,2,16,18,5,11,3,13,19,8,9) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 8: $D_{4}$ 10: $D_{5}$ 20: $D_{10}$ 40: $D_{20}$ 160: $(C_2^4 : C_5) : C_2$ 320: $C_2\times (C_2^4 : D_5)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: $D_{5}$
Degree 10: $D_{10}$
Low degree siblings
20T138 x 5, 40T456 x 3, 40T478 x 6, 40T479 x 6, 40T537 x 6, 40T543 x 12, 40T547 x 6Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 1, 2)( 3, 4)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 1, 2)( 3, 4)( 9,10)(11,12)$ |
| $ 5, 5, 5, 5 $ | $32$ | $5$ | $( 1,14,18, 7,12)( 2,13,17, 8,11)( 3,15,20, 6, 9)( 4,16,19, 5,10)$ |
| $ 5, 5, 5, 5 $ | $32$ | $5$ | $( 1,18,12,14, 7)( 2,17,11,13, 8)( 3,20, 9,15, 6)( 4,19,10,16, 5)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $40$ | $4$ | $( 1,20, 2,19)( 3,18, 4,17)( 5,11)( 6,12)( 7, 9)( 8,10)(13,16)(14,15)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $40$ | $4$ | $( 1,20, 2,19)( 3,18, 4,17)( 5,11, 6,12)( 7, 9, 8,10)(13,15)(14,16)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $40$ | $4$ | $( 1,19)( 2,20)( 3,17)( 4,18)( 5,12, 6,11)( 7,10, 8, 9)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $40$ | $2$ | $( 1,19)( 2,20)( 3,17)( 4,18)( 5,12)( 6,11)( 7,10)( 8, 9)(13,15)(14,16)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 10, 10 $ | $32$ | $10$ | $( 1,14,18, 8,11, 2,13,17, 7,12)( 3,15,20, 5,10, 4,16,19, 6, 9)$ |
| $ 10, 10 $ | $32$ | $10$ | $( 1,18,11,13, 8, 2,17,12,14, 7)( 3,20,10,16, 5, 4,19, 9,15, 6)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $40$ | $2$ | $( 3, 4)( 5,19)( 6,20)( 7,17)( 8,18)( 9,15)(10,16)(11,14)(12,13)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 1, 1 $ | $40$ | $4$ | $( 1, 2)( 5,20, 6,19)( 7,18, 8,17)( 9,15)(10,16)(11,14)(12,13)$ |
| $ 4, 4, 4, 4, 2, 1, 1 $ | $40$ | $4$ | $( 3, 4)( 5,19, 6,20)( 7,17, 8,18)( 9,16,10,15)(11,13,12,14)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 1, 1 $ | $40$ | $4$ | $( 1, 2)( 5,20)( 6,19)( 7,18)( 8,17)( 9,16,10,15)(11,13,12,14)$ |
| $ 20 $ | $32$ | $20$ | $( 1,20,12,16, 8, 4,18,10,13, 6, 2,19,11,15, 7, 3,17, 9,14, 5)$ |
| $ 20 $ | $32$ | $20$ | $( 1, 6,13, 9,18, 4, 7,15,12,19, 2, 5,14,10,17, 3, 8,16,11,20)$ |
| $ 20 $ | $32$ | $20$ | $( 1, 9, 7,20,14, 4,12, 5,18,16, 2,10, 8,19,13, 3,11, 6,17,15)$ |
| $ 20 $ | $32$ | $20$ | $( 1,15,18, 5,12, 4,14,19, 8,10, 2,16,17, 6,11, 3,13,20, 7, 9)$ |
| $ 4, 4, 4, 4, 4 $ | $10$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)(17,20,18,19)$ |
| $ 4, 4, 4, 4, 4 $ | $10$ | $4$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)(17,19,18,20)$ |
| $ 4, 4, 4, 4, 4 $ | $10$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)(17,19,18,20)$ |
| $ 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,12,10,11)(13,15,14,16)(17,20,18,19)$ |
Group invariants
| Order: | $640=2^{7} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [640, 21459] |
| Character table: Data not available. |