Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $135$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,4,2,3)(5,13,20,11)(6,14,19,12)(7,15,18,10)(8,16,17,9), (1,20,2,19)(3,17,4,18)(5,16)(6,15)(7,13)(8,14)(9,10)(11,12) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $C_4\times C_2$ 20: $F_5$ 40: $F_{5}\times C_2$ 320: $(C_2^4 : C_5):C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: $F_5$
Degree 10: $F_5$
Low degree siblings
10T29 x 2, 20T129, 20T131 x 2, 20T132, 20T133, 20T134, 20T137 x 2, 20T140, 32T34608 x 2, 40T460, 40T462, 40T473, 40T474, 40T475, 40T476, 40T487, 40T488, 40T489, 40T490, 40T557, 40T558 x 2, 40T561, 40T562, 40T563, 40T564, 40T565, 40T566, 40T567 x 2, 40T576, 40T577, 40T578, 40T579, 40T586Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 1, 2)( 3, 4)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)(13,14)(15,16)(17,18)(19,20)$ |
| $ 5, 5, 5, 5 $ | $64$ | $5$ | $( 1,20,16,10, 6)( 2,19,15, 9, 5)( 3,17,14,11, 7)( 4,18,13,12, 8)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $40$ | $4$ | $( 5,20)( 6,19)( 7,18)( 8,17)( 9,15,10,16)(11,14,12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $20$ | $2$ | $( 1, 2)( 3, 4)( 5,20)( 6,19)( 7,18)( 8,17)( 9,16)(10,15)(11,13)(12,14)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $20$ | $4$ | $( 1, 2)( 3, 4)( 5,19, 6,20)( 7,17, 8,18)( 9,15,10,16)(11,14,12,13)$ |
| $ 4, 4, 4, 4, 4 $ | $40$ | $4$ | $( 1, 4, 2, 3)( 5,13,20,11)( 6,14,19,12)( 7,15,18,10)( 8,16,17, 9)$ |
| $ 8, 8, 4 $ | $40$ | $8$ | $( 1, 3, 2, 4)( 5,14,19,12, 6,13,20,11)( 7,16,17, 9, 8,15,18,10)$ |
| $ 8, 8, 4 $ | $40$ | $8$ | $( 1, 4, 2, 3)( 5,11,20,14, 6,12,19,13)( 7,10,18,16, 8, 9,17,15)$ |
| $ 4, 4, 4, 4, 4 $ | $40$ | $4$ | $( 1, 3, 2, 4)( 5,11,20,13)( 6,12,19,14)( 7,10,18,15)( 8, 9,17,16)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 1, 2)( 3, 4)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 10, 10 $ | $64$ | $10$ | $( 1,20,15, 9, 5, 2,19,16,10, 6)( 3,17,13,12, 8, 4,18,14,11, 7)$ |
| $ 4, 4, 4, 4, 1, 1, 1, 1 $ | $20$ | $4$ | $( 5,20, 6,19)( 7,18, 8,17)( 9,15,10,16)(11,14,12,13)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $40$ | $4$ | $( 1, 2)( 3, 4)( 5,20, 6,19)( 7,18, 8,17)( 9,16)(10,15)(11,13)(12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $20$ | $2$ | $( 5,19)( 6,20)( 7,17)( 8,18)( 9,16)(10,15)(11,13)(12,14)$ |
| $ 8, 8, 4 $ | $40$ | $8$ | $( 1, 4, 2, 3)( 5,13,20,12, 6,14,19,11)( 7,15,18, 9, 8,16,17,10)$ |
| $ 4, 4, 4, 4, 4 $ | $40$ | $4$ | $( 1, 3, 2, 4)( 5,14,19,11)( 6,13,20,12)( 7,16,17,10)( 8,15,18, 9)$ |
| $ 4, 4, 4, 4, 4 $ | $40$ | $4$ | $( 1, 4, 2, 3)( 5,11,20,13)( 6,12,19,14)( 7,10,18,15)( 8, 9,17,16)$ |
| $ 8, 8, 4 $ | $40$ | $8$ | $( 1, 3, 2, 4)( 5,11,20,14, 6,12,19,13)( 7,10,18,16, 8, 9,17,15)$ |
Group invariants
| Order: | $640=2^{7} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [640, 21536] |
| Character table: Data not available. |