Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $120$ | |
| Group : | $C_4:S_5$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3,10,15,17,12,14,19,6,8,2,4,9,16,18,11,13,20,5,7), (1,10,13,5)(2,9,14,6)(3,16,12,20)(4,15,11,19)(17,18) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 8: $D_{4}$ 120: $S_5$ 240: $S_5\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 5: $S_5$
Degree 10: $S_5\times C_2$
Low degree siblings
20T120, 24T1352 x 2, 40T411 x 2, 40T412 x 2, 40T431Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1 $ | $20$ | $3$ | $( 5,10,18)( 6, 9,17)( 7,15,19)( 8,16,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $20$ | $2$ | $( 3, 4)( 7,20)( 8,19)( 9,17)(10,18)(11,12)(15,16)$ |
| $ 4, 4, 4, 4, 2, 1, 1 $ | $60$ | $4$ | $( 3, 7,16,19)( 4, 8,15,20)( 5,10,14,18)( 6, 9,13,17)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $15$ | $2$ | $( 3, 8)( 4, 7)( 5,10)( 6, 9)(13,17)(14,18)(15,19)(16,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 6, 6, 2, 2, 2, 2 $ | $20$ | $6$ | $( 1, 2)( 3, 4)( 5, 9,18, 6,10,17)( 7,16,19, 8,15,20)(11,12)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $15$ | $2$ | $( 1, 2)( 3, 7)( 4, 8)( 5, 9)( 6,10)(11,12)(13,18)(14,17)(15,20)(16,19)$ |
| $ 6, 6, 2, 2, 2, 2 $ | $40$ | $6$ | $( 1, 3)( 2, 4)( 5, 7,10,15,18,19)( 6, 8, 9,16,17,20)(11,14)(12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $20$ | $2$ | $( 1, 3)( 2, 4)( 5,15)( 6,16)( 7,18)( 8,17)( 9,20)(10,19)(11,14)(12,13)$ |
| $ 4, 4, 4, 4, 4 $ | $30$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,20,10,19)(11,13,12,14)(15,17,16,18)$ |
| $ 20 $ | $24$ | $20$ | $( 1, 3, 5, 7, 9,12,14,15,17,20, 2, 4, 6, 8,10,11,13,16,18,19)$ |
| $ 12, 4, 4 $ | $40$ | $12$ | $( 1, 3, 5,11,13,16, 2, 4, 6,12,14,15)( 7,17, 8,18)( 9,20,10,19)$ |
| $ 20 $ | $24$ | $20$ | $( 1, 3, 5,19,17,12,14,15, 9, 8, 2, 4, 6,20,18,11,13,16,10, 7)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $60$ | $4$ | $( 1, 3, 6, 8)( 2, 4, 5, 7)( 9,20)(10,19)(11,14,15,18)(12,13,16,17)$ |
| $ 10, 10 $ | $24$ | $10$ | $( 1, 5, 9,14,17, 2, 6,10,13,18)( 3, 7,12,15,20, 4, 8,11,16,19)$ |
| $ 6, 3, 3, 2, 2, 2, 2 $ | $40$ | $6$ | $( 1, 5)( 2, 6)( 3, 8,20)( 4, 7,19)( 9,14,17,10,13,18)(11,15)(12,16)$ |
| $ 5, 5, 5, 5 $ | $24$ | $5$ | $( 1, 6, 9,13,17)( 2, 5,10,14,18)( 3, 8,12,16,20)( 4, 7,11,15,19)$ |
| $ 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,11, 2,12)( 3,13, 4,14)( 5,16, 6,15)( 7,18, 8,17)( 9,19,10,20)$ |
Group invariants
| Order: | $480=2^{5} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [480, 944] |
| Character table: |
2 5 3 3 3 5 5 3 5 2 3 4 2 2 2 3 2 2 2 4
3 1 1 1 . . 1 1 . 1 1 . . 1 . . . 1 . 1
5 1 . . . . 1 . . . . . 1 . 1 . 1 . 1 1
1a 3a 2a 4a 2b 2c 6a 2d 6b 2e 4b 20a 12a 20b 4c 10a 6c 5a 4d
2P 1a 3a 1a 2b 1a 1a 3a 1a 3a 1a 2c 10a 6a 10a 2b 5a 3a 5a 2c
3P 1a 1a 2a 4a 2b 2c 2c 2d 2e 2e 4b 20a 4d 20b 4c 10a 2a 5a 4d
5P 1a 3a 2a 4a 2b 2c 6a 2d 6b 2e 4b 4d 12a 4d 4c 2c 6c 1a 4d
7P 1a 3a 2a 4a 2b 2c 6a 2d 6b 2e 4b 20a 12a 20b 4c 10a 6c 5a 4d
11P 1a 3a 2a 4a 2b 2c 6a 2d 6b 2e 4b 20b 12a 20a 4c 10a 6c 5a 4d
13P 1a 3a 2a 4a 2b 2c 6a 2d 6b 2e 4b 20b 12a 20a 4c 10a 6c 5a 4d
17P 1a 3a 2a 4a 2b 2c 6a 2d 6b 2e 4b 20b 12a 20a 4c 10a 6c 5a 4d
19P 1a 3a 2a 4a 2b 2c 6a 2d 6b 2e 4b 20b 12a 20a 4c 10a 6c 5a 4d
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 1 1 -1 -1 1 1 1 1 -1 1 -1 1 1
X.3 1 1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 -1 1 -1
X.4 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1
X.5 2 2 . . 2 -2 -2 -2 . . . . . . . -2 . 2 .
X.6 4 1 -2 . . 4 1 . -1 2 . 1 -1 1 . -1 1 -1 -4
X.7 4 1 -2 . . 4 1 . 1 -2 . -1 1 -1 . -1 1 -1 4
X.8 4 1 2 . . 4 1 . -1 2 . -1 1 -1 . -1 -1 -1 4
X.9 4 1 2 . . 4 1 . 1 -2 . 1 -1 1 . -1 -1 -1 -4
X.10 5 -1 -1 1 1 5 -1 1 -1 -1 1 . -1 . 1 . -1 . 5
X.11 5 -1 -1 1 1 5 -1 1 1 1 -1 . 1 . -1 . -1 . -5
X.12 5 -1 1 -1 1 5 -1 1 -1 -1 -1 . 1 . 1 . 1 . -5
X.13 5 -1 1 -1 1 5 -1 1 1 1 1 . -1 . -1 . 1 . 5
X.14 6 . . . -2 6 . -2 . . -2 1 . 1 . 1 . 1 6
X.15 6 . . . -2 6 . -2 . . 2 -1 . -1 . 1 . 1 -6
X.16 6 . . . -2 -6 . 2 . . . A . -A . -1 . 1 .
X.17 6 . . . -2 -6 . 2 . . . -A . A . -1 . 1 .
X.18 8 2 . . . -8 -2 . . . . . . . . 2 . -2 .
X.19 10 -2 . . 2 -10 2 -2 . . . . . . . . . . .
A = -E(20)-E(20)^9+E(20)^13+E(20)^17
= -Sqrt(-5) = -i5
|