Properties

Label 20T1110
Order \(3715891200\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $1110$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,9,8,16)(2,10,7,15)(3,19,17,14,5)(4,20,18,13,6), (1,17,3,2,18,4)(5,6)(7,12,19,9,13,16,8,11,20,10,14,15)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
3628800:  $S_{10}$
7257600:  20T1021

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: None

Degree 10: $S_{10}$

Low degree siblings

20T1110 x 3, 40T268331 x 2, 40T268347 x 2, 40T268348 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 481 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $3715891200=2^{18} \cdot 3^{4} \cdot 5^{2} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.