Properties

Label 20T1106
Order \(1857945600\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $1106$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,14,18,8,19,4,10,15)(2,13,17,7,20,3,9,16)(5,11,6,12), (1,11,20,10,17,5,15,2,12,19,9,18,6,16)(7,8)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
1814400:  $A_{10}$
3628800:  20T1006

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: None

Degree 10: $A_{10}$

Low degree siblings

20T1106, 40T252680

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 260 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1857945600=2^{17} \cdot 3^{4} \cdot 5^{2} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.