Properties

Label 20T1100
Order \(928972800\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $1100$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,9,15,18,19,8)(2,10,16,17,20,7)(3,11,14,6)(4,12,13,5), (1,16,12)(2,15,11)(3,19,14)(4,20,13)(5,17,7)(6,18,8)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
1814400:  $A_{10}$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: None

Degree 10: $A_{10}$

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 139 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $928972800=2^{16} \cdot 3^{4} \cdot 5^{2} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.