Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $106$ | |
| Group : | $C_{10}^2:C_2^2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,7)(2,8)(3,5)(4,6)(11,14)(12,13)(15,20)(16,19), (1,17,8,13,4,19,9,15,6,11,2,18,7,14,3,20,10,16,5,12), (1,4,6,7,10)(2,3,5,8,9)(11,18,14,20,16,12,17,13,19,15) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 2, $C_2^3$ 10: $D_{5}$ x 2 16: $D_4\times C_2$ 20: $D_{10}$ x 6 40: 20T8 x 2 80: 20T21 x 2 100: $D_5^2$ 200: 20T59 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 5: None
Degree 10: $D_5^2$
Low degree siblings
20T106 x 7, 40T318 x 4, 40T388 x 4, 40T389 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $10$ | $(11,13,16,18,19,12,14,15,17,20)$ |
| $ 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $5$ | $(11,14,16,17,19)(12,13,15,18,20)$ |
| $ 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $10$ | $(11,15,19,13,17,12,16,20,14,18)$ |
| $ 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $5$ | $(11,16,19,14,17)(12,15,20,13,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $25$ | $2$ | $( 3, 9)( 4,10)( 5, 8)( 6, 7)(13,20)(14,19)(15,18)(16,17)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $50$ | $2$ | $( 3, 9)( 4,10)( 5, 8)( 6, 7)(11,12)(13,19)(14,20)(15,17)(16,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 10, 2, 2, 2, 2, 2 $ | $4$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,13,16,18,19,12,14,15,17,20)$ |
| $ 5, 5, 2, 2, 2, 2, 2 $ | $4$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,14,16,17,19)(12,13,15,18,20)$ |
| $ 10, 2, 2, 2, 2, 2 $ | $4$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,15,19,13,17,12,16,20,14,18)$ |
| $ 5, 5, 2, 2, 2, 2, 2 $ | $4$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,16,19,14,17)(12,15,20,13,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $25$ | $2$ | $( 1, 2)( 3,10)( 4, 9)( 5, 7)( 6, 8)(11,12)(13,19)(14,20)(15,17)(16,18)$ |
| $ 10, 10 $ | $2$ | $10$ | $( 1, 3, 6, 8,10, 2, 4, 5, 7, 9)(11,13,16,18,19,12,14,15,17,20)$ |
| $ 10, 5, 5 $ | $4$ | $10$ | $( 1, 3, 6, 8,10, 2, 4, 5, 7, 9)(11,14,16,17,19)(12,13,15,18,20)$ |
| $ 10, 10 $ | $4$ | $10$ | $( 1, 3, 6, 8,10, 2, 4, 5, 7, 9)(11,15,19,13,17,12,16,20,14,18)$ |
| $ 10, 5, 5 $ | $4$ | $10$ | $( 1, 3, 6, 8,10, 2, 4, 5, 7, 9)(11,16,19,14,17)(12,15,20,13,18)$ |
| $ 10, 5, 5 $ | $4$ | $10$ | $( 1, 3, 6, 8,10, 2, 4, 5, 7, 9)(11,17,14,19,16)(12,18,13,20,15)$ |
| $ 10, 10 $ | $4$ | $10$ | $( 1, 3, 6, 8,10, 2, 4, 5, 7, 9)(11,18,14,20,16,12,17,13,19,15)$ |
| $ 10, 5, 5 $ | $4$ | $10$ | $( 1, 3, 6, 8,10, 2, 4, 5, 7, 9)(11,19,17,16,14)(12,20,18,15,13)$ |
| $ 10, 10 $ | $2$ | $10$ | $( 1, 3, 6, 8,10, 2, 4, 5, 7, 9)(11,20,17,15,14,12,19,18,16,13)$ |
| $ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 4, 6, 7,10)( 2, 3, 5, 8, 9)(11,14,16,17,19)(12,13,15,18,20)$ |
| $ 10, 5, 5 $ | $4$ | $10$ | $( 1, 4, 6, 7,10)( 2, 3, 5, 8, 9)(11,15,19,13,17,12,16,20,14,18)$ |
| $ 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 4, 6, 7,10)( 2, 3, 5, 8, 9)(11,16,19,14,17)(12,15,20,13,18)$ |
| $ 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 4, 6, 7,10)( 2, 3, 5, 8, 9)(11,17,14,19,16)(12,18,13,20,15)$ |
| $ 10, 5, 5 $ | $4$ | $10$ | $( 1, 4, 6, 7,10)( 2, 3, 5, 8, 9)(11,18,14,20,16,12,17,13,19,15)$ |
| $ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 4, 6, 7,10)( 2, 3, 5, 8, 9)(11,19,17,16,14)(12,20,18,15,13)$ |
| $ 10, 10 $ | $2$ | $10$ | $( 1, 5,10, 3, 7, 2, 6, 9, 4, 8)(11,15,19,13,17,12,16,20,14,18)$ |
| $ 10, 5, 5 $ | $4$ | $10$ | $( 1, 5,10, 3, 7, 2, 6, 9, 4, 8)(11,16,19,14,17)(12,15,20,13,18)$ |
| $ 10, 5, 5 $ | $4$ | $10$ | $( 1, 5,10, 3, 7, 2, 6, 9, 4, 8)(11,17,14,19,16)(12,18,13,20,15)$ |
| $ 10, 10 $ | $2$ | $10$ | $( 1, 5,10, 3, 7, 2, 6, 9, 4, 8)(11,18,14,20,16,12,17,13,19,15)$ |
| $ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 6,10, 4, 7)( 2, 5, 9, 3, 8)(11,16,19,14,17)(12,15,20,13,18)$ |
| $ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 6,10, 4, 7)( 2, 5, 9, 3, 8)(11,17,14,19,16)(12,18,13,20,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $10$ | $2$ | $( 1,11)( 2,12)( 3,13)( 4,14)( 5,15)( 6,16)( 7,17)( 8,18)( 9,20)(10,19)$ |
| $ 4, 4, 4, 4, 4 $ | $10$ | $4$ | $( 1,11, 2,12)( 3,13, 4,14)( 5,15, 6,16)( 7,17, 8,18)( 9,20,10,19)$ |
| $ 20 $ | $20$ | $20$ | $( 1,11, 3,13, 6,16, 8,18,10,19, 2,12, 4,14, 5,15, 7,17, 9,20)$ |
| $ 10, 10 $ | $20$ | $10$ | $( 1,11, 4,14, 6,16, 7,17,10,19)( 2,12, 3,13, 5,15, 8,18, 9,20)$ |
| $ 20 $ | $20$ | $20$ | $( 1,11, 5,15,10,19, 3,13, 7,17, 2,12, 6,16, 9,20, 4,14, 8,18)$ |
| $ 10, 10 $ | $20$ | $10$ | $( 1,11, 6,16,10,19, 4,14, 7,17)( 2,12, 5,15, 9,20, 3,13, 8,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $10$ | $2$ | $( 1,11)( 2,12)( 3,20)( 4,19)( 5,18)( 6,17)( 7,16)( 8,15)( 9,13)(10,14)$ |
| $ 4, 4, 4, 4, 4 $ | $10$ | $4$ | $( 1,11, 2,12)( 3,20, 4,19)( 5,18, 6,17)( 7,16, 8,15)( 9,13,10,14)$ |
| $ 20 $ | $20$ | $20$ | $( 1,11, 3,20, 6,17, 8,15,10,14, 2,12, 4,19, 5,18, 7,16, 9,13)$ |
| $ 10, 10 $ | $20$ | $10$ | $( 1,11, 4,19, 6,17, 7,16,10,14)( 2,12, 3,20, 5,18, 8,15, 9,13)$ |
| $ 20 $ | $20$ | $20$ | $( 1,11, 5,18,10,14, 3,20, 7,16, 2,12, 6,17, 9,13, 4,19, 8,15)$ |
| $ 10, 10 $ | $20$ | $10$ | $( 1,11, 6,17,10,14, 4,19, 7,16)( 2,12, 5,18, 9,13, 3,20, 8,15)$ |
Group invariants
| Order: | $400=2^{4} \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [400, 180] |
| Character table: Data not available. |