Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $105$ | |
| Group : | $C_5:D_5.Q_8$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2)(3,7,19,16)(4,8,20,15)(5,10,17,14)(6,9,18,13)(11,12), (1,11,14,3,5,16,18,8,9,20,2,12,13,4,6,15,17,7,10,19) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$, $C_4\times C_2$, $Q_8$ 16: $C_4:C_4$ 200: $D_5^2 : C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 5: None
Degree 10: $D_5^2 : C_2$
Low degree siblings
20T105, 40T336 x 2, 40T338 x 2, 40T363, 40T365Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 4, 4, 4, 1, 1, 1, 1 $ | $50$ | $4$ | $( 5, 9,17,13)( 6,10,18,14)( 7,16,20,11)( 8,15,19,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $25$ | $2$ | $( 5,17)( 6,18)( 7,20)( 8,19)( 9,13)(10,14)(11,16)(12,15)$ |
| $ 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $5$ | $( 3, 8,12,15,19)( 4, 7,11,16,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $50$ | $4$ | $( 1, 2)( 3, 4)( 5,10,17,14)( 6, 9,18,13)( 7,15,20,12)( 8,16,19,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $25$ | $2$ | $( 1, 2)( 3, 4)( 5,18)( 6,17)( 7,19)( 8,20)( 9,14)(10,13)(11,15)(12,16)$ |
| $ 10, 2, 2, 2, 2, 2 $ | $8$ | $10$ | $( 1, 2)( 3, 7,12,16,19, 4, 8,11,15,20)( 5, 6)( 9,10)(13,14)(17,18)$ |
| $ 4, 4, 4, 4, 4 $ | $10$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,15,14,16)(17,19,18,20)$ |
| $ 4, 4, 4, 4, 4 $ | $10$ | $4$ | $( 1, 3, 2, 4)( 5,12, 6,11)( 7,13, 8,14)( 9,19,10,20)(15,18,16,17)$ |
| $ 20 $ | $20$ | $20$ | $( 1, 3, 6, 7, 9,12,14,16,17,19, 2, 4, 5, 8,10,11,13,15,18,20)$ |
| $ 20 $ | $20$ | $20$ | $( 1, 3, 6,11, 9,19,14, 7,17,15, 2, 4, 5,12,10,20,13, 8,18,16)$ |
| $ 20 $ | $20$ | $20$ | $( 1, 3, 6,16, 9, 8,14,20,17,12, 2, 4, 5,15,10, 7,13,19,18,11)$ |
| $ 20 $ | $20$ | $20$ | $( 1, 3, 6,20, 9,15,14,11,17, 8, 2, 4, 5,19,10,16,13,12,18, 7)$ |
| $ 4, 4, 4, 4, 4 $ | $10$ | $4$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)(17,20,18,19)$ |
| $ 4, 4, 4, 4, 4 $ | $10$ | $4$ | $( 1, 4, 2, 3)( 5,11, 6,12)( 7,14, 8,13)( 9,20,10,19)(15,17,16,18)$ |
| $ 20 $ | $20$ | $20$ | $( 1, 4, 6, 8, 9,11,14,15,17,20, 2, 3, 5, 7,10,12,13,16,18,19)$ |
| $ 20 $ | $20$ | $20$ | $( 1, 4, 6,12, 9,20,14, 8,17,16, 2, 3, 5,11,10,19,13, 7,18,15)$ |
| $ 20 $ | $20$ | $20$ | $( 1, 4, 6,15, 9, 7,14,19,17,11, 2, 3, 5,16,10, 8,13,20,18,12)$ |
| $ 20 $ | $20$ | $20$ | $( 1, 4, 6,19, 9,16,14,12,17, 7, 2, 3, 5,20,10,15,13,11,18, 8)$ |
| $ 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 5, 9,13,17)( 2, 6,10,14,18)( 3, 8,12,15,19)( 4, 7,11,16,20)$ |
| $ 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 5, 9,13,17)( 2, 6,10,14,18)( 3,12,19, 8,15)( 4,11,20, 7,16)$ |
| $ 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 5, 9,13,17)( 2, 6,10,14,18)( 3,15, 8,19,12)( 4,16, 7,20,11)$ |
| $ 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 5, 9,13,17)( 2, 6,10,14,18)( 3,19,15,12, 8)( 4,20,16,11, 7)$ |
| $ 10, 10 $ | $4$ | $10$ | $( 1, 6, 9,14,17, 2, 5,10,13,18)( 3, 7,12,16,19, 4, 8,11,15,20)$ |
| $ 10, 10 $ | $4$ | $10$ | $( 1, 6, 9,14,17, 2, 5,10,13,18)( 3,11,19, 7,15, 4,12,20, 8,16)$ |
| $ 10, 10 $ | $4$ | $10$ | $( 1, 6, 9,14,17, 2, 5,10,13,18)( 3,16, 8,20,12, 4,15, 7,19,11)$ |
| $ 10, 10 $ | $4$ | $10$ | $( 1, 6, 9,14,17, 2, 5,10,13,18)( 3,20,15,11, 8, 4,19,16,12, 7)$ |
Group invariants
| Order: | $400=2^{4} \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [400, 130] |
| Character table: Data not available. |