Properties

Label 20T1040
Order \(14745600\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $1040$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,11,2,12)(3,14)(4,13)(5,8,6,7)(9,19,17,16)(10,20,18,15), (1,14,17,10,5)(2,13,18,9,6)(3,4)(7,20,15,12,8,19,16,11), (1,14,10,5)(2,13,9,6)(3,12,8,15,4,11,7,16)(17,18)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 2, $C_2^3$
16:  $D_4\times C_2$
28800:  $S_5^2 \wr C_2$
57600:  20T655
7372800:  20T1022

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: None

Degree 10: $S_5^2 \wr C_2$

Low degree siblings

20T1038 x 2, 20T1040, 40T178078 x 2, 40T178080 x 2, 40T178082 x 2, 40T178083 x 2, 40T178085 x 2, 40T178093 x 2, 40T178103, 40T178105, 40T178139 x 2, 40T178140 x 2, 40T178141 x 2, 40T178142 x 2, 40T178143 x 2, 40T178144 x 2, 40T178145 x 2, 40T178146 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 378 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $14745600=2^{16} \cdot 3^{2} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.