Properties

Label 20T1037
Order \(14745600\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $1037$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,8,2,7)(3,10,4,9)(5,12,13,20)(6,11,14,19)(15,17)(16,18), (5,18,9,14,6,17,10,13)(7,15,12,19)(8,16,11,20)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_4$ x 2, $C_2^2$
8:  $D_{4}$ x 2, $C_4\times C_2$
16:  $C_2^2:C_4$
14400:  $A_5^2 : C_4$
28800:  20T541
57600:  20T659
3686400:  20T1011
7372800:  20T1025

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: None

Degree 10: $A_5^2 : C_4$

Low degree siblings

20T1037 x 3, 40T178060 x 2, 40T178071 x 4, 40T178072 x 4, 40T178089 x 2, 40T178112 x 2, 40T178155 x 4, 40T178156 x 4, 40T178157 x 4, 40T178158 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 384 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $14745600=2^{16} \cdot 3^{2} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.