Properties

Label 20T1036
Order \(14745600\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $1036$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,3,5,20,17,15,13,8,10,12,2,4,6,19,18,16,14,7,9,11), (1,17,13,9)(2,18,14,10)(3,11,19,16,4,12,20,15), (1,18,14,9,2,17,13,10)(3,11,8,19)(4,12,7,20)(5,6)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 2, $C_2^3$
16:  $D_4\times C_2$
14400:  $(A_5^2 : C_2):C_2$
28800:  20T548
57600:  20T658
3686400:  20T1009
7372800:  20T1028

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: None

Degree 10: $(A_5^2 : C_2):C_2$

Low degree siblings

20T1036 x 3, 40T178058 x 2, 40T178067 x 4, 40T178068 x 4, 40T178132 x 2, 40T178134 x 2, 40T178151 x 4, 40T178152 x 4, 40T178153 x 4, 40T178154 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 396 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $14745600=2^{16} \cdot 3^{2} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.