Properties

Label 20T1028
Order \(7372800\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $1028$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,9,6,13,18,2,10,5,14,17)(3,19,11,8,15,4,20,12,7,16), (1,9,2,10)(3,7,19,16)(4,8,20,15)(13,14), (1,15,17,20,13,3,9,12,5,7)(2,16,18,19,14,4,10,11,6,8)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $C_2^3$
14400:  $(A_5^2 : C_2):C_2$
28800:  20T548
3686400:  20T1009

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: None

Degree 10: $(A_5^2 : C_2):C_2$

Low degree siblings

20T1028, 40T171494, 40T171507 x 2, 40T171508 x 2, 40T171541 x 2, 40T171542 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 228 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $7372800=2^{15} \cdot 3^{2} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.