Properties

Label 20T1023
Order \(7372800\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $1023$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,7,17,3,14,19)(2,8,18,4,13,20)(5,11)(6,12)(9,16)(10,15), (1,4,2,3)(5,20,14,7,6,19,13,8)(9,11,17,15,10,12,18,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
8:  $D_{4}$
7200:  $A_5 \wr C_2$
14400:  20T458
28800:  20T546
1843200:  20T985
3686400:  20T1008

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: None

Degree 10: $A_5 \wr C_2$

Low degree siblings

20T1023, 40T171489 x 2, 40T171490 x 2, 40T171504, 40T171537 x 2, 40T171538 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 324 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $7372800=2^{15} \cdot 3^{2} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.