Properties

Label 20T1015
Order \(3932160\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $1015$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,4,15)(2,3,16)(5,12,13)(6,11,14)(7,20,17,10)(8,19,18,9), (1,12)(2,11)(3,14)(4,13)(5,16)(6,15)(7,19,8,20)(9,18)(10,17), (1,8,4,12,18,13,2,7,3,11,17,14)(5,15)(6,16)(9,19)(10,20)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $C_2^3$
120:  $S_5$
240:  $S_5\times C_2$ x 3
480:  20T117
1920:  $(C_2^4:A_5) : C_2$ x 3
3840:  $C_2 \wr S_5$ x 9
7680:  20T368 x 3
30720:  20T555
61440:  20T664 x 3
122880:  20T799

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $S_5$

Degree 10: $C_2 \wr S_5$

Low degree siblings

20T1015 x 15, 40T162300 x 8, 40T162378 x 8, 40T162506 x 8, 40T162681 x 8, 40T162682 x 8, 40T162685 x 8, 40T162686 x 8, 40T162820 x 8, 40T162822 x 8, 40T162888 x 8, 40T162890 x 8, 40T163186 x 8, 40T163188 x 8, 40T163195 x 8, 40T163198 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 506 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $3932160=2^{18} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.