Properties

Label 20T1010
Order \(3686400\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $1010$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,9,6,2,10,5)(7,15)(8,16)(11,19,12,20)(13,14)(17,18), (1,16,9,19,6,4)(2,15,10,20,5,3)(7,18)(8,17)(11,14,12,13)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
4:  $C_4$
7200:  $A_5 \wr C_2$
14400:  20T460
1843200:  20T985

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: None

Degree 10: $A_5 \wr C_2$

Low degree siblings

40T161997, 40T162000, 40T162008

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 180 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $3686400=2^{14} \cdot 3^{2} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.