Show commands:
Magma
magma: G := TransitiveGroup(20, 10);
Group action invariants
Degree $n$: | $20$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $10$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $D_{20}$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,19)(2,20)(3,18)(4,17)(5,16)(6,15)(7,13)(8,14)(9,12)(10,11), (1,3,5,8,10,11,14,16,18,19,2,4,6,7,9,12,13,15,17,20) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $8$: $D_{4}$ $10$: $D_{5}$ $20$: $D_{10}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 5: $D_{5}$
Degree 10: $D_{10}$
Low degree siblings
20T10, 40T12Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $10$ | $2$ | $( 3,20)( 4,19)( 5,17)( 6,18)( 7,16)( 8,15)( 9,14)(10,13)(11,12)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $10$ | $2$ | $( 1, 3)( 2, 4)( 5,20)( 6,19)( 7,18)( 8,17)( 9,16)(10,15)(11,13)(12,14)$ |
$ 20 $ | $2$ | $20$ | $( 1, 3, 5, 8,10,11,14,16,18,19, 2, 4, 6, 7, 9,12,13,15,17,20)$ |
$ 20 $ | $2$ | $20$ | $( 1, 4, 5, 7,10,12,14,15,18,20, 2, 3, 6, 8, 9,11,13,16,17,19)$ |
$ 10, 10 $ | $2$ | $10$ | $( 1, 5,10,14,18, 2, 6, 9,13,17)( 3, 8,11,16,19, 4, 7,12,15,20)$ |
$ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 6,10,13,18)( 2, 5, 9,14,17)( 3, 7,11,15,19)( 4, 8,12,16,20)$ |
$ 20 $ | $2$ | $20$ | $( 1, 7,14,20, 6,11,17, 4,10,15, 2, 8,13,19, 5,12,18, 3, 9,16)$ |
$ 20 $ | $2$ | $20$ | $( 1, 8,14,19, 6,12,17, 3,10,16, 2, 7,13,20, 5,11,18, 4, 9,15)$ |
$ 10, 10 $ | $2$ | $10$ | $( 1, 9,18, 5,13, 2,10,17, 6,14)( 3,12,19, 8,15, 4,11,20, 7,16)$ |
$ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1,10,18, 6,13)( 2, 9,17, 5,14)( 3,11,19, 7,15)( 4,12,20, 8,16)$ |
$ 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,11, 2,12)( 3,14, 4,13)( 5,16, 6,15)( 7,17, 8,18)( 9,20,10,19)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $40=2^{3} \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 40.6 | magma: IdentifyGroup(G);
|
Character table: |
2 3 2 3 2 2 2 2 2 2 2 2 2 2 5 1 . 1 . 1 1 1 1 1 1 1 1 1 1a 2a 2b 2c 20a 20b 10a 5a 20c 20d 10b 5b 4a 2P 1a 1a 1a 1a 10a 10a 5b 5b 10b 10b 5a 5a 2b 3P 1a 2a 2b 2c 20d 20c 10b 5b 20a 20b 10a 5a 4a 5P 1a 2a 2b 2c 4a 4a 2b 1a 4a 4a 2b 1a 4a 7P 1a 2a 2b 2c 20c 20d 10b 5b 20b 20a 10a 5a 4a 11P 1a 2a 2b 2c 20b 20a 10a 5a 20d 20c 10b 5b 4a 13P 1a 2a 2b 2c 20c 20d 10b 5b 20b 20a 10a 5a 4a 17P 1a 2a 2b 2c 20d 20c 10b 5b 20a 20b 10a 5a 4a 19P 1a 2a 2b 2c 20a 20b 10a 5a 20c 20d 10b 5b 4a X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 -1 1 -1 1 1 1 1 1 1 1 1 1 X.3 1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 X.4 1 1 1 -1 -1 -1 1 1 -1 -1 1 1 -1 X.5 2 . -2 . . . -2 2 . . -2 2 . X.6 2 . 2 . A A *A *A *A *A A A 2 X.7 2 . 2 . *A *A A A A A *A *A 2 X.8 2 . 2 . -A -A *A *A -*A -*A A A -2 X.9 2 . 2 . -*A -*A A A -A -A *A *A -2 X.10 2 . -2 . B -B -*A *A -C C -A A . X.11 2 . -2 . C -C -A A B -B -*A *A . X.12 2 . -2 . -B B -*A *A C -C -A A . X.13 2 . -2 . -C C -A A -B B -*A *A . A = E(5)^2+E(5)^3 = (-1-Sqrt(5))/2 = -1-b5 B = E(20)^13-E(20)^17 C = E(20)-E(20)^9 |
magma: CharacterTable(G);