Show commands:
Magma
magma: G := TransitiveGroup(20, 10);
Group action invariants
Degree $n$: | $20$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $10$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $D_{20}$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,19)(2,20)(3,18)(4,17)(5,16)(6,15)(7,13)(8,14)(9,12)(10,11), (1,3,5,8,10,11,14,16,18,19,2,4,6,7,9,12,13,15,17,20) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $8$: $D_{4}$ $10$: $D_{5}$ $20$: $D_{10}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 5: $D_{5}$
Degree 10: $D_{10}$
Low degree siblings
20T10, 40T12Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{20}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{10}$ | $1$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
2B | $2^{10}$ | $10$ | $2$ | $10$ | $( 1,11)( 2,12)( 3,10)( 4, 9)( 5, 8)( 6, 7)(13,19)(14,20)(15,18)(16,17)$ |
2C | $2^{9},1^{2}$ | $10$ | $2$ | $9$ | $( 1,10)( 2, 9)( 3, 8)( 4, 7)(11,20)(12,19)(13,18)(14,17)(15,16)$ |
4A | $4^{5}$ | $2$ | $4$ | $15$ | $( 1,11, 2,12)( 3,14, 4,13)( 5,16, 6,15)( 7,17, 8,18)( 9,20,10,19)$ |
5A1 | $5^{4}$ | $2$ | $5$ | $16$ | $( 1,10,18, 6,13)( 2, 9,17, 5,14)( 3,11,19, 7,15)( 4,12,20, 8,16)$ |
5A2 | $5^{4}$ | $2$ | $5$ | $16$ | $( 1,18,13,10, 6)( 2,17,14, 9, 5)( 3,19,15,11, 7)( 4,20,16,12, 8)$ |
10A1 | $10^{2}$ | $2$ | $10$ | $18$ | $( 1, 5,10,14,18, 2, 6, 9,13,17)( 3, 8,11,16,19, 4, 7,12,15,20)$ |
10A3 | $10^{2}$ | $2$ | $10$ | $18$ | $( 1,14, 6,17,10, 2,13, 5,18, 9)( 3,16, 7,20,11, 4,15, 8,19,12)$ |
20A1 | $20$ | $2$ | $20$ | $19$ | $( 1, 3, 5, 8,10,11,14,16,18,19, 2, 4, 6, 7, 9,12,13,15,17,20)$ |
20A3 | $20$ | $2$ | $20$ | $19$ | $( 1,15, 9, 4,18,11, 5,20,13, 7, 2,16,10, 3,17,12, 6,19,14, 8)$ |
20A7 | $20$ | $2$ | $20$ | $19$ | $( 1, 7,14,20, 6,11,17, 4,10,15, 2, 8,13,19, 5,12,18, 3, 9,16)$ |
20A9 | $20$ | $2$ | $20$ | $19$ | $( 1,19,17,16,13,11, 9, 8, 6, 3, 2,20,18,15,14,12,10, 7, 5, 4)$ |
Malle's constant $a(G)$: $1/9$
magma: ConjugacyClasses(G);
Group invariants
Order: | $40=2^{3} \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 40.6 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 4A | 5A1 | 5A2 | 10A1 | 10A3 | 20A1 | 20A3 | 20A7 | 20A9 | ||
Size | 1 | 1 | 10 | 10 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 1A | 1A | 2A | 5A2 | 5A1 | 5A1 | 5A2 | 10A1 | 10A3 | 10A3 | 10A1 | |
5 P | 1A | 2A | 2B | 2C | 4A | 1A | 1A | 2A | 2A | 4A | 4A | 4A | 4A | |
Type | ||||||||||||||
40.6.1a | R | |||||||||||||
40.6.1b | R | |||||||||||||
40.6.1c | R | |||||||||||||
40.6.1d | R | |||||||||||||
40.6.2a | R | |||||||||||||
40.6.2b1 | R | |||||||||||||
40.6.2b2 | R | |||||||||||||
40.6.2c1 | R | |||||||||||||
40.6.2c2 | R | |||||||||||||
40.6.2d1 | R | |||||||||||||
40.6.2d2 | R | |||||||||||||
40.6.2d3 | R | |||||||||||||
40.6.2d4 | R |
magma: CharacterTable(G);