Show commands:
Magma
magma: G := TransitiveGroup(19, 6);
Group action invariants
Degree $n$: | $19$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $6$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $F_{19}$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19), (2,3,5,9,17,14,8,15,10,19,18,16,12,4,7,13,6,11) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ $9$: $C_9$ $18$: $C_{18}$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{19}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{9},1$ | $19$ | $2$ | $9$ | $( 2,19)( 3,18)( 4,17)( 5,16)( 6,15)( 7,14)( 8,13)( 9,12)(10,11)$ |
3A1 | $3^{6},1$ | $19$ | $3$ | $12$ | $( 2,12, 8)( 3, 4,15)( 5, 7,10)( 6,18,17)( 9,13,19)(11,16,14)$ |
3A-1 | $3^{6},1$ | $19$ | $3$ | $12$ | $( 2, 8,12)( 3,15, 4)( 5,10, 7)( 6,17,18)( 9,19,13)(11,14,16)$ |
6A1 | $6^{3},1$ | $19$ | $6$ | $15$ | $( 2,13,12,19, 8, 9)( 3, 6, 4,18,15,17)( 5,11, 7,16,10,14)$ |
6A-1 | $6^{3},1$ | $19$ | $6$ | $15$ | $( 2, 9, 8,19,12,13)( 3,17,15,18, 4, 6)( 5,14,10,16, 7,11)$ |
9A1 | $9^{2},1$ | $19$ | $9$ | $16$ | $( 2,10, 6, 8, 7,17,12, 5,18)( 3,19,11,15,13,14, 4, 9,16)$ |
9A-1 | $9^{2},1$ | $19$ | $9$ | $16$ | $( 2, 6, 7,12,18,10, 8,17, 5)( 3,11,13, 4,16,19,15,14, 9)$ |
9A2 | $9^{2},1$ | $19$ | $9$ | $16$ | $( 2, 5,17, 8,10,18,12, 7, 6)( 3, 9,14,15,19,16, 4,13,11)$ |
9A-2 | $9^{2},1$ | $19$ | $9$ | $16$ | $( 2,18, 5,12,17, 7, 8, 6,10)( 3,16, 9, 4,14,13,15,11,19)$ |
9A4 | $9^{2},1$ | $19$ | $9$ | $16$ | $( 2,17,10,12, 6, 5, 8,18, 7)( 3,14,19, 4,11, 9,15,16,13)$ |
9A-4 | $9^{2},1$ | $19$ | $9$ | $16$ | $( 2, 7,18, 8, 5, 6,12,10,17)( 3,13,16,15, 9,11, 4,19,14)$ |
18A1 | $18,1$ | $19$ | $18$ | $17$ | $( 2, 3, 5, 9,17,14, 8,15,10,19,18,16,12, 4, 7,13, 6,11)$ |
18A-1 | $18,1$ | $19$ | $18$ | $17$ | $( 2,11, 6,13, 7, 4,12,16,18,19,10,15, 8,14,17, 9, 5, 3)$ |
18A5 | $18,1$ | $19$ | $18$ | $17$ | $( 2,15, 7, 9,18,11, 8, 4, 5,19, 6,14,12, 3,10,13,17,16)$ |
18A-5 | $18,1$ | $19$ | $18$ | $17$ | $( 2, 4,10, 9, 6,16, 8, 3, 7,19,17,11,12,15, 5,13,18,14)$ |
18A7 | $18,1$ | $19$ | $18$ | $17$ | $( 2,14,18,13, 5,15,12,11,17,19, 7, 3, 8,16, 6, 9,10, 4)$ |
18A-7 | $18,1$ | $19$ | $18$ | $17$ | $( 2,16,17,13,10, 3,12,14, 6,19, 5, 4, 8,11,18, 9, 7,15)$ |
19A | $19$ | $18$ | $19$ | $18$ | $( 1,19,18,17,16,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$ |
Malle's constant $a(G)$: $1/9$
magma: ConjugacyClasses(G);
Group invariants
Order: | $342=2 \cdot 3^{2} \cdot 19$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 342.7 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 9A1 | 9A-1 | 9A2 | 9A-2 | 9A4 | 9A-4 | 18A1 | 18A-1 | 18A5 | 18A-5 | 18A7 | 18A-7 | 19A | ||
Size | 1 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 18 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 3A1 | 3A-1 | 9A-2 | 9A-4 | 9A4 | 9A2 | 9A-1 | 9A1 | 9A2 | 9A-2 | 9A-4 | 9A-1 | 9A1 | 9A4 | 19A | |
3 P | 1A | 2A | 1A | 1A | 2A | 2A | 3A-1 | 3A1 | 3A-1 | 3A1 | 3A1 | 3A-1 | 6A-1 | 6A1 | 6A-1 | 6A-1 | 6A1 | 6A1 | 19A | |
19 P | 1A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 9A-1 | 9A-2 | 9A2 | 9A1 | 9A4 | 9A-4 | 18A-7 | 18A7 | 18A5 | 18A-1 | 18A1 | 18A-5 | 1A | |
Type | ||||||||||||||||||||
342.7.1a | R | |||||||||||||||||||
342.7.1b | R | |||||||||||||||||||
342.7.1c1 | C | |||||||||||||||||||
342.7.1c2 | C | |||||||||||||||||||
342.7.1d1 | C | |||||||||||||||||||
342.7.1d2 | C | |||||||||||||||||||
342.7.1e1 | C | |||||||||||||||||||
342.7.1e2 | C | |||||||||||||||||||
342.7.1e3 | C | |||||||||||||||||||
342.7.1e4 | C | |||||||||||||||||||
342.7.1e5 | C | |||||||||||||||||||
342.7.1e6 | C | |||||||||||||||||||
342.7.1f1 | C | |||||||||||||||||||
342.7.1f2 | C | |||||||||||||||||||
342.7.1f3 | C | |||||||||||||||||||
342.7.1f4 | C | |||||||||||||||||||
342.7.1f5 | C | |||||||||||||||||||
342.7.1f6 | C | |||||||||||||||||||
342.7.18a | R |
magma: CharacterTable(G);