Show commands:
Magma
magma: G := TransitiveGroup(19, 5);
Group action invariants
Degree $n$: | $19$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $5$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_{19}:C_{9}$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19), (2,5,17,8,10,18,12,7,6)(3,9,14,15,19,16,4,13,11) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ $9$: $C_9$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{19}$ | $1$ | $1$ | $0$ | $()$ |
3A1 | $3^{6},1$ | $19$ | $3$ | $12$ | $( 2,12, 8)( 3, 4,15)( 5, 7,10)( 6,18,17)( 9,13,19)(11,16,14)$ |
3A-1 | $3^{6},1$ | $19$ | $3$ | $12$ | $( 2, 8,12)( 3,15, 4)( 5,10, 7)( 6,17,18)( 9,19,13)(11,14,16)$ |
9A1 | $9^{2},1$ | $19$ | $9$ | $16$ | $( 2, 6, 7,12,18,10, 8,17, 5)( 3,11,13, 4,16,19,15,14, 9)$ |
9A-1 | $9^{2},1$ | $19$ | $9$ | $16$ | $( 2, 7,18, 8, 5, 6,12,10,17)( 3,13,16,15, 9,11, 4,19,14)$ |
9A2 | $9^{2},1$ | $19$ | $9$ | $16$ | $( 2,10, 6, 8, 7,17,12, 5,18)( 3,19,11,15,13,14, 4, 9,16)$ |
9A-2 | $9^{2},1$ | $19$ | $9$ | $16$ | $( 2,17,10,12, 6, 5, 8,18, 7)( 3,14,19, 4,11, 9,15,16,13)$ |
9A4 | $9^{2},1$ | $19$ | $9$ | $16$ | $( 2,18, 5,12,17, 7, 8, 6,10)( 3,16, 9, 4,14,13,15,11,19)$ |
9A-4 | $9^{2},1$ | $19$ | $9$ | $16$ | $( 2, 5,17, 8,10,18,12, 7, 6)( 3, 9,14,15,19,16, 4,13,11)$ |
19A1 | $19$ | $9$ | $19$ | $18$ | $( 1,19,18,17,16,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$ |
19A-1 | $19$ | $9$ | $19$ | $18$ | $( 1,18,16,14,12,10, 8, 6, 4, 2,19,17,15,13,11, 9, 7, 5, 3)$ |
Malle's constant $a(G)$: $1/12$
magma: ConjugacyClasses(G);
Group invariants
Order: | $171=3^{2} \cdot 19$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 171.3 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 3A1 | 3A-1 | 9A1 | 9A-1 | 9A2 | 9A-2 | 9A4 | 9A-4 | 19A1 | 19A-1 | ||
Size | 1 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 9 | 9 | |
3 P | 1A | 3A-1 | 3A1 | 9A-1 | 9A-2 | 9A4 | 9A2 | 9A-4 | 9A1 | 19A-1 | 19A1 | |
19 P | 1A | 1A | 1A | 3A1 | 3A-1 | 3A-1 | 3A1 | 3A1 | 3A-1 | 19A-1 | 19A1 | |
Type | ||||||||||||
171.3.1a | R | |||||||||||
171.3.1b1 | C | |||||||||||
171.3.1b2 | C | |||||||||||
171.3.1c1 | C | |||||||||||
171.3.1c2 | C | |||||||||||
171.3.1c3 | C | |||||||||||
171.3.1c4 | C | |||||||||||
171.3.1c5 | C | |||||||||||
171.3.1c6 | C | |||||||||||
171.3.9a1 | C | |||||||||||
171.3.9a2 | C |
magma: CharacterTable(G);