Show commands:
Magma
magma: G := TransitiveGroup(19, 4);
Group action invariants
Degree $n$: | $19$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $4$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_{19}:C_{6}$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19), (2,9,8,19,12,13)(3,17,15,18,4,6)(5,14,10,16,7,11) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{19}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{9},1$ | $19$ | $2$ | $9$ | $( 2,19)( 3,18)( 4,17)( 5,16)( 6,15)( 7,14)( 8,13)( 9,12)(10,11)$ |
3A1 | $3^{6},1$ | $19$ | $3$ | $12$ | $( 2,12, 8)( 3, 4,15)( 5, 7,10)( 6,18,17)( 9,13,19)(11,16,14)$ |
3A-1 | $3^{6},1$ | $19$ | $3$ | $12$ | $( 2, 8,12)( 3,15, 4)( 5,10, 7)( 6,17,18)( 9,19,13)(11,14,16)$ |
6A1 | $6^{3},1$ | $19$ | $6$ | $15$ | $( 2,13,12,19, 8, 9)( 3, 6, 4,18,15,17)( 5,11, 7,16,10,14)$ |
6A-1 | $6^{3},1$ | $19$ | $6$ | $15$ | $( 2, 9, 8,19,12,13)( 3,17,15,18, 4, 6)( 5,14,10,16, 7,11)$ |
19A1 | $19$ | $6$ | $19$ | $18$ | $( 1,19,18,17,16,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$ |
19A2 | $19$ | $6$ | $19$ | $18$ | $( 1,18,16,14,12,10, 8, 6, 4, 2,19,17,15,13,11, 9, 7, 5, 3)$ |
19A4 | $19$ | $6$ | $19$ | $18$ | $( 1,16,12, 8, 4,19,15,11, 7, 3,18,14,10, 6, 2,17,13, 9, 5)$ |
Malle's constant $a(G)$: $1/9$
magma: ConjugacyClasses(G);
Group invariants
Order: | $114=2 \cdot 3 \cdot 19$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 114.1 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 19A1 | 19A2 | 19A4 | ||
Size | 1 | 19 | 19 | 19 | 19 | 19 | 6 | 6 | 6 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 3A1 | 3A-1 | 19A2 | 19A4 | 19A1 | |
3 P | 1A | 2A | 1A | 1A | 2A | 2A | 19A2 | 19A4 | 19A1 | |
19 P | 1A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 1A | 1A | 1A | |
Type | ||||||||||
114.1.1a | R | |||||||||
114.1.1b | R | |||||||||
114.1.1c1 | C | |||||||||
114.1.1c2 | C | |||||||||
114.1.1d1 | C | |||||||||
114.1.1d2 | C | |||||||||
114.1.6a1 | R | |||||||||
114.1.6a2 | R | |||||||||
114.1.6a3 | R |
magma: CharacterTable(G);