Properties

Label 19T4
Degree $19$
Order $114$
Cyclic no
Abelian no
Solvable yes
Primitive yes
$p$-group no
Group: $C_{19}:C_{6}$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(19, 4);
 

Group action invariants

Degree $n$:  $19$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $4$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $C_{19}:C_{6}$
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  yes
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $1$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19), (2,9,8,19,12,13)(3,17,15,18,4,6)(5,14,10,16,7,11)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$3$:  $C_3$
$6$:  $C_6$

Resolvents shown for degrees $\leq 47$

Subfields

Prime degree - none

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{19}$ $1$ $1$ $0$ $()$
2A $2^{9},1$ $19$ $2$ $9$ $( 2,19)( 3,18)( 4,17)( 5,16)( 6,15)( 7,14)( 8,13)( 9,12)(10,11)$
3A1 $3^{6},1$ $19$ $3$ $12$ $( 2,12, 8)( 3, 4,15)( 5, 7,10)( 6,18,17)( 9,13,19)(11,16,14)$
3A-1 $3^{6},1$ $19$ $3$ $12$ $( 2, 8,12)( 3,15, 4)( 5,10, 7)( 6,17,18)( 9,19,13)(11,14,16)$
6A1 $6^{3},1$ $19$ $6$ $15$ $( 2,13,12,19, 8, 9)( 3, 6, 4,18,15,17)( 5,11, 7,16,10,14)$
6A-1 $6^{3},1$ $19$ $6$ $15$ $( 2, 9, 8,19,12,13)( 3,17,15,18, 4, 6)( 5,14,10,16, 7,11)$
19A1 $19$ $6$ $19$ $18$ $( 1,19,18,17,16,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$
19A2 $19$ $6$ $19$ $18$ $( 1,18,16,14,12,10, 8, 6, 4, 2,19,17,15,13,11, 9, 7, 5, 3)$
19A4 $19$ $6$ $19$ $18$ $( 1,16,12, 8, 4,19,15,11, 7, 3,18,14,10, 6, 2,17,13, 9, 5)$

Malle's constant $a(G)$:     $1/9$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $114=2 \cdot 3 \cdot 19$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  114.1
magma: IdentifyGroup(G);
 
Character table:

1A 2A 3A1 3A-1 6A1 6A-1 19A1 19A2 19A4
Size 1 19 19 19 19 19 6 6 6
2 P 1A 1A 3A-1 3A1 3A1 3A-1 19A2 19A4 19A1
3 P 1A 2A 1A 1A 2A 2A 19A2 19A4 19A1
19 P 1A 2A 3A1 3A-1 6A1 6A-1 1A 1A 1A
Type
114.1.1a R 1 1 1 1 1 1 1 1 1
114.1.1b R 1 1 1 1 1 1 1 1 1
114.1.1c1 C 1 1 ζ31 ζ3 ζ3 ζ31 1 1 1
114.1.1c2 C 1 1 ζ3 ζ31 ζ31 ζ3 1 1 1
114.1.1d1 C 1 1 ζ31 ζ3 ζ3 ζ31 1 1 1
114.1.1d2 C 1 1 ζ3 ζ31 ζ31 ζ3 1 1 1
114.1.6a1 R 6 0 0 0 0 0 ζ199+ζ196+ζ194+ζ194+ζ196+ζ199 ζ198+ζ197+ζ191+ζ19+ζ197+ζ198 ζ195+ζ193+ζ192+ζ192+ζ193+ζ195
114.1.6a2 R 6 0 0 0 0 0 ζ198+ζ197+ζ191+ζ19+ζ197+ζ198 ζ195+ζ193+ζ192+ζ192+ζ193+ζ195 ζ199+ζ196+ζ194+ζ194+ζ196+ζ199
114.1.6a3 R 6 0 0 0 0 0 ζ195+ζ193+ζ192+ζ192+ζ193+ζ195 ζ199+ζ196+ζ194+ζ194+ζ196+ζ199 ζ198+ζ197+ζ191+ζ19+ζ197+ζ198

magma: CharacterTable(G);