Label 18T966
Order \(92897280\)
n \(18\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $966$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,5,7,4,2,6,8,3)(9,18)(10,17)(11,14,15)(12,13,16), (1,18,8,11,9,2,17,7,12,10)(3,4)(5,13,16)(6,14,15)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
181440:  $A_9$
362880:  18T888
46448640:  18T963

Resolvents shown for degrees $\leq 47$


Degree 2: None

Degree 3: None

Degree 6: None

Degree 9: $A_9$

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 168 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $92897280=2^{15} \cdot 3^{4} \cdot 5 \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.