Properties

Label 18T951
Order \(3359232\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $951$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,13,9,2,14,8)(3,15,7)(4,18)(5,16,6,17)(10,11), (1,14,2,13)(3,15)(4,12)(5,10)(6,11)(7,8,9), (1,10,14,16,9,5,3,11,15,18,7,6)(2,12,13,17,8,4)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 3
32:  $C_2^2 \wr C_2$
72:  $C_3^2:D_4$
144:  12T77
288:  12T125
1152:  $S_4\wr C_2$
2304:  12T235
4608:  12T260

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 6: $C_3^2:D_4$

Degree 9: None

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 275 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $3359232=2^{9} \cdot 3^{8}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.