Properties

Label 18T945
Order \(2239488\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $945$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,15)(2,14)(3,13)(4,12)(5,11,6,10)(7,18,9,17,8,16), (1,6,9,11,14,18,3,5,7,12,15,16,2,4,8,10,13,17), (1,15,10,5)(2,13,12,4,3,14,11,6)(7,8)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
6:  $S_3$
8:  $C_2^3$
12:  $D_{6}$ x 3
24:  $S_4$ x 3, $S_3 \times C_2^2$
48:  $S_4\times C_2$ x 9
96:  $V_4^2:S_3$, 12T48 x 3
192:  12T100 x 3
384:  12T139
768:  16T1055
1536:  24T3386
3072:  12T250

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 6: $S_4\times C_2$

Degree 9: None

Low degree siblings

18T945

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 255 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $2239488=2^{10} \cdot 3^{7}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.