Properties

Label 18T930
Order \(1119744\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $930$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,6)(2,4,3,5)(7,9,8)(10,13,11,15)(12,14)(16,17), (1,15,9)(2,13,7,3,14,8)(4,16,12,5,17,10,6,18,11), (1,5,11,13,3,6,12,14)(2,4,10,15)(7,16,8,17)(9,18)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$
12:  $D_{6}$
24:  $S_4$ x 3
48:  $S_4\times C_2$ x 3
96:  $V_4^2:S_3$
192:  $C_2^3:S_4$ x 2, 12T100
384:  16T747
768:  16T1063
1536:  12T226

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 6: $S_4$

Degree 9: None

Low degree siblings

18T932

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 174 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1119744=2^{9} \cdot 3^{7}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.