Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $93$ | |
| Group : | $C_3\times S_3\wr C_2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,16,14,11,8,4)(2,17,15,12,9,5)(3,18,13,10,7,6), (1,14,2,15,3,13)(4,16,11)(5,17,12)(6,18,10)(7,9,8) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $C_6$ x 3 8: $D_{4}$ 12: $C_6\times C_2$ 24: $D_4 \times C_3$ 72: $C_3^2:D_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 6: $C_6$, $C_3^2:D_4$
Degree 9: None
Low degree siblings
12T121 x 2, 18T93Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $(10,17)(11,18)(12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 7,15)( 8,13)( 9,14)(10,17)(11,18)(12,16)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 4,10,17)( 5,11,18)( 6,12,16)$ |
| $ 3, 3, 3, 2, 2, 2, 1, 1, 1 $ | $12$ | $6$ | $( 4,10,17)( 5,11,18)( 6,12,16)( 7,15)( 8,13)( 9,14)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)$ |
| $ 6, 3, 3, 3, 3 $ | $6$ | $6$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,18,12,17,11,16)(13,14,15)$ |
| $ 6, 6, 3, 3 $ | $9$ | $6$ | $( 1, 2, 3)( 4, 5, 6)( 7,13, 9,15, 8,14)(10,18,12,17,11,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 2, 3)( 4,11,16)( 5,12,17)( 6,10,18)( 7, 8, 9)(13,14,15)$ |
| $ 6, 3, 3, 3, 3 $ | $12$ | $6$ | $( 1, 2, 3)( 4,11,16)( 5,12,17)( 6,10,18)( 7,13, 9,15, 8,14)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)$ |
| $ 6, 3, 3, 3, 3 $ | $6$ | $6$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,16,11,17,12,18)(13,15,14)$ |
| $ 6, 6, 3, 3 $ | $9$ | $6$ | $( 1, 3, 2)( 4, 6, 5)( 7,14, 8,15, 9,13)(10,16,11,17,12,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 3, 2)( 4,12,18)( 5,10,16)( 6,11,17)( 7, 9, 8)(13,15,14)$ |
| $ 6, 3, 3, 3, 3 $ | $12$ | $6$ | $( 1, 3, 2)( 4,12,18)( 5,10,16)( 6,11,17)( 7,14, 8,15, 9,13)$ |
| $ 6, 6, 6 $ | $6$ | $6$ | $( 1, 4, 2, 5, 3, 6)( 7,10, 8,11, 9,12)(13,18,14,16,15,17)$ |
| $ 12, 6 $ | $18$ | $12$ | $( 1, 4, 2, 5, 3, 6)( 7,10,13,18, 9,12,15,17, 8,11,14,16)$ |
| $ 6, 6, 6 $ | $12$ | $6$ | $( 1, 4, 8,11,14,16)( 2, 5, 9,12,15,17)( 3, 6, 7,10,13,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 5)( 2, 6)( 3, 4)( 7,11)( 8,12)( 9,10)(13,16)(14,17)(15,18)$ |
| $ 4, 4, 4, 2, 2, 2 $ | $18$ | $4$ | $( 1, 5)( 2, 6)( 3, 4)( 7,11,15,18)( 8,12,13,16)( 9,10,14,17)$ |
| $ 6, 6, 6 $ | $12$ | $6$ | $( 1, 5, 7,11,15,18)( 2, 6, 8,12,13,16)( 3, 4, 9,10,14,17)$ |
| $ 6, 6, 6 $ | $6$ | $6$ | $( 1, 6, 3, 5, 2, 4)( 7,12, 9,11, 8,10)(13,17,15,16,14,18)$ |
| $ 12, 6 $ | $18$ | $12$ | $( 1, 6, 3, 5, 2, 4)( 7,12,14,18, 8,10,15,16, 9,11,13,17)$ |
| $ 6, 6, 6 $ | $12$ | $6$ | $( 1, 6, 9,11,13,17)( 2, 4, 7,12,14,18)( 3, 5, 8,10,15,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 7,15)( 2, 8,13)( 3, 9,14)( 4,10,17)( 5,11,18)( 6,12,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 8,14)( 2, 9,15)( 3, 7,13)( 4,11,16)( 5,12,17)( 6,10,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 9,13)( 2, 7,14)( 3, 8,15)( 4,12,18)( 5,10,16)( 6,11,17)$ |
Group invariants
| Order: | $216=2^{3} \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [216, 157] |
| Character table: Data not available. |