Properties

Label 18T926
Order \(1119744\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $926$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,9,15,3,8,14,2,7,13)(4,10,16)(5,12,18)(6,11,17), (16,17), (2,3)(7,16,9,18,8,17)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $C_6$ x 3
12:  $A_4$ x 5, $C_6\times C_2$
24:  $A_4\times C_2$ x 15
48:  $C_2^2 \times A_4$ x 5, $C_2^4:C_3$
96:  12T56 x 3
192:  12T90
384:  16T718
768:  24T1654
1536:  $D_4\wr C_3$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$

Degree 6: $A_4\times C_2$

Degree 9: None

Low degree siblings

18T926

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 267 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1119744=2^{9} \cdot 3^{7}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.