Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $92$ | |
| Group : | $C_2\times C_3^2.A_4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,8,18,5,11,16,3,9,14,2,7,17,6,12,15,4,10,13), (1,7,14,5,12,17,3,10,15,2,8,13,6,11,18,4,9,16) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ x 4 6: $C_6$ x 4 9: $C_3^2$ 12: $A_4$ 18: $C_6 \times C_3$ 24: $A_4\times C_2$ 27: $C_9:C_3$ 36: $C_3\times A_4$ 54: 18T14 72: 18T25 108: 18T47 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 6: $A_4\times C_2$
Degree 9: $C_9:C_3$
Low degree siblings
18T92 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 6, 3, 3, 1, 1, 1, 1, 1, 1 $ | $3$ | $6$ | $( 7, 9,11, 8,10,12)(13,17,16)(14,18,15)$ |
| $ 6, 6, 1, 1, 1, 1, 1, 1 $ | $3$ | $6$ | $( 7, 9,11, 8,10,12)(13,18,16,14,17,15)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $3$ | $3$ | $( 7,10,11)( 8, 9,12)(13,17,16)(14,18,15)$ |
| $ 6, 3, 3, 1, 1, 1, 1, 1, 1 $ | $3$ | $6$ | $( 7,10,11)( 8, 9,12)(13,18,16,14,17,15)$ |
| $ 6, 3, 3, 1, 1, 1, 1, 1, 1 $ | $3$ | $6$ | $( 7,11,10)( 8,12, 9)(13,15,17,14,16,18)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $3$ | $3$ | $( 7,11,10)( 8,12, 9)(13,16,17)(14,15,18)$ |
| $ 6, 6, 1, 1, 1, 1, 1, 1 $ | $3$ | $6$ | $( 7,12,10, 8,11, 9)(13,15,17,14,16,18)$ |
| $ 6, 3, 3, 1, 1, 1, 1, 1, 1 $ | $3$ | $6$ | $( 7,12,10, 8,11, 9)(13,16,17)(14,15,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 6, 3, 3, 2, 2, 2 $ | $3$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 9,11, 8,10,12)(13,17,16)(14,18,15)$ |
| $ 6, 6, 2, 2, 2 $ | $3$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 9,11, 8,10,12)(13,18,16,14,17,15)$ |
| $ 3, 3, 3, 3, 2, 2, 2 $ | $3$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7,10,11)( 8, 9,12)(13,17,16)(14,18,15)$ |
| $ 6, 3, 3, 2, 2, 2 $ | $3$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7,10,11)( 8, 9,12)(13,18,16,14,17,15)$ |
| $ 6, 3, 3, 2, 2, 2 $ | $3$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7,11,10)( 8,12, 9)(13,15,17,14,16,18)$ |
| $ 3, 3, 3, 3, 2, 2, 2 $ | $3$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7,11,10)( 8,12, 9)(13,16,17)(14,15,18)$ |
| $ 6, 6, 2, 2, 2 $ | $3$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7,12,10, 8,11, 9)(13,15,17,14,16,18)$ |
| $ 6, 3, 3, 2, 2, 2 $ | $3$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7,12,10, 8,11, 9)(13,16,17)(14,15,18)$ |
| $ 6, 6, 3, 3 $ | $3$ | $6$ | $( 1, 3, 6)( 2, 4, 5)( 7, 9,11, 8,10,12)(13,15,17,14,16,18)$ |
| $ 6, 3, 3, 3, 3 $ | $3$ | $6$ | $( 1, 3, 6)( 2, 4, 5)( 7, 9,11, 8,10,12)(13,16,17)(14,15,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 3, 6)( 2, 4, 5)( 7,10,11)( 8, 9,12)(13,16,17)(14,15,18)$ |
| $ 6, 6, 6 $ | $1$ | $6$ | $( 1, 4, 6, 2, 3, 5)( 7, 9,11, 8,10,12)(13,15,17,14,16,18)$ |
| $ 6, 3, 3, 3, 3 $ | $3$ | $6$ | $( 1, 5, 3, 2, 6, 4)( 7,11,10)( 8,12, 9)(13,17,16)(14,18,15)$ |
| $ 6, 6, 3, 3 $ | $3$ | $6$ | $( 1, 5, 3, 2, 6, 4)( 7,11,10)( 8,12, 9)(13,18,16,14,17,15)$ |
| $ 6, 6, 6 $ | $1$ | $6$ | $( 1, 5, 3, 2, 6, 4)( 7,12,10, 8,11, 9)(13,18,16,14,17,15)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 6, 3)( 2, 5, 4)( 7,11,10)( 8,12, 9)(13,17,16)(14,18,15)$ |
| $ 18 $ | $12$ | $18$ | $( 1, 7,13, 5,12,18, 3,10,16, 2, 8,14, 6,11,17, 4, 9,15)$ |
| $ 9, 9 $ | $12$ | $9$ | $( 1, 7,13, 6,11,17, 3,10,16)( 2, 8,14, 5,12,18, 4, 9,15)$ |
| $ 18 $ | $12$ | $18$ | $( 1, 7,15, 5,12,13, 3,10,18, 2, 8,16, 6,11,14, 4, 9,17)$ |
| $ 9, 9 $ | $12$ | $9$ | $( 1, 7,15, 6,11,14, 3,10,18)( 2, 8,16, 5,12,13, 4, 9,17)$ |
| $ 9, 9 $ | $12$ | $9$ | $( 1, 7,17, 6,11,16, 3,10,13)( 2, 8,18, 5,12,15, 4, 9,14)$ |
| $ 18 $ | $12$ | $18$ | $( 1, 7,17, 5,12,15, 3,10,13, 2, 8,18, 6,11,16, 4, 9,14)$ |
| $ 18 $ | $12$ | $18$ | $( 1,13, 9, 4,15,11, 6,17, 8, 2,14,10, 3,16,12, 5,18, 7)$ |
| $ 9, 9 $ | $12$ | $9$ | $( 1,13,10, 3,16,11, 6,17, 7)( 2,14, 9, 4,15,12, 5,18, 8)$ |
| $ 9, 9 $ | $12$ | $9$ | $( 1,13, 7, 3,16,10, 6,17,11)( 2,14, 8, 4,15, 9, 5,18,12)$ |
| $ 18 $ | $12$ | $18$ | $( 1,13, 8, 4,15,10, 6,17,12, 2,14, 7, 3,16, 9, 5,18,11)$ |
| $ 18 $ | $12$ | $18$ | $( 1,13,11, 4,15, 8, 6,17,10, 2,14,12, 3,16, 7, 5,18, 9)$ |
| $ 9, 9 $ | $12$ | $9$ | $( 1,13,12, 3,16, 8, 6,17, 9)( 2,14,11, 4,15, 7, 5,18,10)$ |
Group invariants
| Order: | $216=2^{3} \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [216, 106] |
| Character table: Data not available. |