Properties

Label 18T912
Order \(663552\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $912$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,5,16)(2,6,15)(3,8,14)(4,7,13)(9,11,17,10,12,18), (7,8)(9,10)(11,15)(12,16), (1,6,17,9,2,5,18,10)(3,8,4,7)(11,14)(12,13)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
6:  $S_3$
8:  $C_2^3$
12:  $D_{6}$ x 3
24:  $S_4$ x 3, $S_3 \times C_2^2$
48:  $S_4\times C_2$ x 9
96:  $V_4^2:S_3$, 12T48 x 3
192:  12T100 x 3
384:  12T139
1296:  $S_3\wr S_3$
2592:  18T394
5184:  18T483
10368:  18T556
82944:  12T294
165888:  18T836
331776:  18T880

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 6: None

Degree 9: $S_3\wr S_3$

Low degree siblings

18T912 x 7

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 330 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $663552=2^{13} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.