Properties

Label 18T903
Order \(559872\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $903$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,11,3,12)(2,10)(4,13,5,14,6,15)(7,17,8,18)(9,16), (1,7,2,8,3,9)(10,18,12,17,11,16)(13,15,14), (4,18,6,17)(5,16)(7,14,9,15)(8,13)(10,11)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
6:  $S_3$
8:  $D_{4}$ x 2, $C_2^3$
12:  $D_{6}$ x 3
16:  $D_4\times C_2$
24:  $S_4$, $S_3 \times C_2^2$
48:  $S_4\times C_2$ x 3, 12T28
96:  12T48
192:  $V_4^2:(S_3\times C_2)$, 12T86
384:  12T136
768:  12T186

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: $S_3$

Degree 6: $D_{6}$

Degree 9: None

Low degree siblings

18T901

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 174 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $559872=2^{8} \cdot 3^{7}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.