Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $90$ | |
| Group : | $C_3\times A_5$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,18,6)(2,16,4)(3,17,5)(7,10,14)(8,11,15)(9,12,13), (1,15,2,13,3,14)(4,18,5,16,6,17)(7,9,8)(10,12,11) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 60: $A_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 6: $\PSL(2,5)$
Degree 9: None
Low degree siblings
15T15 x 2, 15T16Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $15$ | $2$ | $( 7,16)( 8,17)( 9,18)(10,14)(11,15)(12,13)$ |
| $ 5, 5, 5, 1, 1, 1 $ | $12$ | $5$ | $( 4, 7,14,10,16)( 5, 8,15,11,17)( 6, 9,13,12,18)$ |
| $ 5, 5, 5, 1, 1, 1 $ | $12$ | $5$ | $( 4,10, 7,16,14)( 5,11, 8,17,15)( 6,12, 9,18,13)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)$ |
| $ 6, 6, 3, 3 $ | $15$ | $6$ | $( 1, 2, 3)( 4, 5, 6)( 7,17, 9,16, 8,18)(10,15,12,14,11,13)$ |
| $ 15, 3 $ | $12$ | $15$ | $( 1, 2, 3)( 4, 8,13,10,17, 6, 7,15,12,16, 5, 9,14,11,18)$ |
| $ 15, 3 $ | $12$ | $15$ | $( 1, 2, 3)( 4,11, 9,16,15, 6,10, 8,18,14, 5,12, 7,17,13)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)$ |
| $ 6, 6, 3, 3 $ | $15$ | $6$ | $( 1, 3, 2)( 4, 6, 5)( 7,18, 8,16, 9,17)(10,13,11,14,12,15)$ |
| $ 15, 3 $ | $12$ | $15$ | $( 1, 3, 2)( 4, 9,15,10,18, 5, 7,13,11,16, 6, 8,14,12,17)$ |
| $ 15, 3 $ | $12$ | $15$ | $( 1, 3, 2)( 4,12, 8,16,13, 5,10, 9,17,14, 6,11, 7,18,15)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $20$ | $3$ | $( 1, 4, 8)( 2, 5, 9)( 3, 6, 7)(10,15,18)(11,13,16)(12,14,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $20$ | $3$ | $( 1, 5, 7)( 2, 6, 8)( 3, 4, 9)(10,13,17)(11,14,18)(12,15,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $20$ | $3$ | $( 1, 6, 9)( 2, 4, 7)( 3, 5, 8)(10,14,16)(11,15,17)(12,13,18)$ |
Group invariants
| Order: | $180=2^{2} \cdot 3^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [180, 19] |
| Character table: |
2 2 2 . . 2 2 . . 2 2 . . . . .
3 2 1 1 1 2 1 1 1 2 1 1 1 2 2 2
5 1 . 1 1 1 . 1 1 1 . 1 1 . . .
1a 2a 5a 5b 3a 6a 15a 15b 3b 6b 15c 15d 3c 3d 3e
2P 1a 1a 5b 5a 3b 3b 15d 15c 3a 3a 15b 15a 3d 3c 3e
3P 1a 2a 5b 5a 1a 2a 5b 5a 1a 2a 5b 5a 1a 1a 1a
5P 1a 2a 1a 1a 3b 6b 3b 3b 3a 6a 3a 3a 3d 3c 3e
7P 1a 2a 5b 5a 3a 6a 15b 15a 3b 6b 15d 15c 3c 3d 3e
11P 1a 2a 5a 5b 3b 6b 15c 15d 3a 6a 15a 15b 3d 3c 3e
13P 1a 2a 5b 5a 3a 6a 15b 15a 3b 6b 15d 15c 3c 3d 3e
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 B B B B /B /B /B /B B /B 1
X.3 1 1 1 1 /B /B /B /B B B B B /B B 1
X.4 3 -1 A *A 3 -1 A *A 3 -1 A *A . . .
X.5 3 -1 *A A 3 -1 *A A 3 -1 *A A . . .
X.6 3 -1 A *A C -B F G /C -/B /F /G . . .
X.7 3 -1 A *A /C -/B /F /G C -B F G . . .
X.8 3 -1 *A A C -B G F /C -/B /G /F . . .
X.9 3 -1 *A A /C -/B /G /F C -B G F . . .
X.10 4 . -1 -1 4 . -1 -1 4 . -1 -1 1 1 1
X.11 4 . -1 -1 D . -B -B /D . -/B -/B B /B 1
X.12 4 . -1 -1 /D . -/B -/B D . -B -B /B B 1
X.13 5 1 . . 5 1 . . 5 1 . . -1 -1 -1
X.14 5 1 . . E B . . /E /B . . -B -/B -1
X.15 5 1 . . /E /B . . E B . . -/B -B -1
A = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5
B = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
C = 3*E(3)^2
= (-3-3*Sqrt(-3))/2 = -3-3b3
D = 4*E(3)^2
= -2-2*Sqrt(-3) = -2-2i3
E = 5*E(3)^2
= (-5-5*Sqrt(-3))/2 = -5-5b3
F = -E(15)^7-E(15)^13
G = -E(15)-E(15)^4
|