Properties

Label 18T888
Order \(362880\)
n \(18\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $888$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,2)(3,12,5,7,18,4,11,6,8,17)(9,13,16,10,14,15), (1,10,5,13,11,17,16,2,9,6,14,12,18,15)(3,4)(7,8)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
181440:  $A_9$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 6: None

Degree 9: $A_9$

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $378$ $2$ $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $378$ $2$ $( 1, 3)( 2, 4)( 5, 8)( 6, 7)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $945$ $2$ $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,12)(10,11)(13,16)(14,15)(17,18)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ $945$ $2$ $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,11)(10,12)(13,15)(14,16)$
$ 6, 2, 2, 2, 2, 2, 2 $ $168$ $6$ $( 1, 4, 5, 2, 3, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$
$ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $168$ $3$ $( 1, 3, 5)( 2, 4, 6)$
$ 6, 2, 2, 2, 2, 2, 2 $ $7560$ $6$ $( 1, 4, 5, 2, 3, 6)( 7, 9)( 8,10)(11,13)(12,14)(15,16)(17,18)$
$ 3, 3, 2, 2, 2, 2, 1, 1, 1, 1 $ $7560$ $6$ $( 1, 3, 5)( 2, 4, 6)( 7,10)( 8, 9)(11,14)(12,13)$
$ 6, 6, 2, 2, 2 $ $3360$ $6$ $( 1, 4, 5, 2, 3, 6)( 7, 9,12, 8,10,11)(13,14)(15,16)(17,18)$
$ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ $3360$ $3$ $( 1, 3, 5)( 2, 4, 6)( 7,10,12)( 8, 9,11)$
$ 6, 6, 6 $ $2240$ $6$ $( 1, 4, 5, 2, 3, 6)( 7, 9,12, 8,10,11)(13,16,17,14,15,18)$
$ 3, 3, 3, 3, 3, 3 $ $2240$ $3$ $( 1, 3, 5)( 2, 4, 6)( 7,10,12)( 8, 9,11)(13,15,17)(14,16,18)$
$ 4, 4, 2, 2, 2, 2, 2 $ $7560$ $4$ $( 1, 4, 5, 7)( 2, 3, 6, 8)( 9,12)(10,11)(13,14)(15,16)(17,18)$
$ 4, 4, 2, 2, 1, 1, 1, 1, 1, 1 $ $7560$ $4$ $( 1, 3, 5, 8)( 2, 4, 6, 7)( 9,11)(10,12)$
$ 6, 4, 4, 2, 2 $ $15120$ $12$ $( 1, 4, 5, 7)( 2, 3, 6, 8)( 9,12,14,10,11,13)(15,18)(16,17)$
$ 4, 4, 3, 3, 2, 2 $ $15120$ $12$ $( 1, 3, 5, 8)( 2, 4, 6, 7)( 9,11,14)(10,12,13)(15,17)(16,18)$
$ 4, 4, 4, 4, 2 $ $11340$ $4$ $( 1, 4, 5, 7)( 2, 3, 6, 8)( 9,12,14,15)(10,11,13,16)(17,18)$
$ 4, 4, 4, 4, 1, 1 $ $11340$ $4$ $( 1, 3, 5, 8)( 2, 4, 6, 7)( 9,11,14,16)(10,12,13,15)$
$ 10, 2, 2, 2, 2 $ $3024$ $10$ $( 1, 4, 5, 7, 9, 2, 3, 6, 8,10)(11,12)(13,14)(15,16)(17,18)$
$ 5, 5, 1, 1, 1, 1, 1, 1, 1, 1 $ $3024$ $5$ $( 1, 3, 5, 8, 9)( 2, 4, 6, 7,10)$
$ 10, 2, 2, 2, 2 $ $9072$ $10$ $( 1, 4, 5, 7, 9, 2, 3, 6, 8,10)(11,13)(12,14)(15,18)(16,17)$
$ 5, 5, 2, 2, 2, 2 $ $9072$ $10$ $( 1, 3, 5, 8, 9)( 2, 4, 6, 7,10)(11,14)(12,13)(15,17)(16,18)$
$ 10, 6, 2 $ $12096$ $30$ $( 1, 4, 5, 7, 9, 2, 3, 6, 8,10)(11,13,16,12,14,15)(17,18)$
$ 5, 5, 3, 3, 1, 1 $ $12096$ $15$ $( 1, 3, 5, 8, 9)( 2, 4, 6, 7,10)(11,14,16)(12,13,15)$
$ 10, 6, 2 $ $12096$ $30$ $( 1, 4, 5, 7, 9, 2, 3, 6, 8,10)(11,13,18,12,14,17)(15,16)$
$ 5, 5, 3, 3, 1, 1 $ $12096$ $15$ $( 1, 3, 5, 8, 9)( 2, 4, 6, 7,10)(11,14,18)(12,13,17)$
$ 6, 6, 2, 2, 2 $ $30240$ $6$ $( 1, 4, 5, 7, 9,12)( 2, 3, 6, 8,10,11)(13,16)(14,15)(17,18)$
$ 6, 6, 2, 2, 1, 1 $ $30240$ $6$ $( 1, 3, 5, 8, 9,11)( 2, 4, 6, 7,10,12)(13,15)(14,16)$
$ 14, 2, 2 $ $25920$ $14$ $( 1, 4, 5, 7, 9,12,14, 2, 3, 6, 8,10,11,13)(15,16)(17,18)$
$ 7, 7, 1, 1, 1, 1 $ $25920$ $7$ $( 1, 3, 5, 8, 9,11,14)( 2, 4, 6, 7,10,12,13)$
$ 18 $ $20160$ $18$ $( 1, 4, 5, 7, 9,12,14,15,18, 2, 3, 6, 8,10,11,13,16,17)$
$ 9, 9 $ $20160$ $9$ $( 1, 3, 5, 8, 9,11,14,16,18)( 2, 4, 6, 7,10,12,13,15,17)$
$ 18 $ $20160$ $18$ $( 1, 4, 5, 7, 9,12,14,17,16, 2, 3, 6, 8,10,11,13,18,15)$
$ 9, 9 $ $20160$ $9$ $( 1, 3, 5, 8, 9,11,14,18,16)( 2, 4, 6, 7,10,12,13,17,15)$

Group invariants

Order:  $362880=2^{7} \cdot 3^{4} \cdot 5 \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.