Properties

Label 18T882
Order \(331776\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $882$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,7,16,17,6,14,4,9,11,2,8,15,18,5,13,3,10,12), (1,10,4,8)(2,9,3,7)(5,17,6,18)(11,14,12,13)(15,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$
12:  $D_{6}$
24:  $S_4$ x 3
48:  $S_4\times C_2$ x 3
96:  $V_4^2:S_3$
192:  12T100
648:  $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$
1296:  18T305
2592:  18T403
5184:  18T487
41472:  12T290
82944:  18T769
165888:  18T841

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 6: None

Degree 9: $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$

Low degree siblings

18T882 x 3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 192 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $331776=2^{12} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.