Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $88$ | |
| Group : | $C_3\wr C_3:C_2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,4,17)(2,3,18), (1,8,14)(2,7,13)(3,10,16)(4,9,15)(5,11,17)(6,12,18), (1,3)(2,4)(5,12)(6,11)(7,15)(8,16)(9,13)(10,14)(17,18) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ x 4 18: $C_3^2:C_2$ 54: $(C_3^2:C_3):C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 6: $S_3$
Degree 9: $(C_3^3:C_3):C_2$
Low degree siblings
9T21 x 3, 18T88 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $(11,14,15)(12,13,16)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $( 5, 8, 9)( 6, 7,10)(11,14,15)(12,13,16)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $3$ | $3$ | $( 5, 8, 9)( 6, 7,10)(11,15,14)(12,16,13)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $3$ | $3$ | $( 5, 9, 8)( 6,10, 7)(11,14,15)(12,13,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $27$ | $2$ | $( 1, 2)( 3,17)( 4,18)( 5,12)( 6,11)( 7,15)( 8,16)( 9,13)(10,14)$ |
| $ 6, 6, 2, 2, 2 $ | $27$ | $6$ | $( 1, 2)( 3,17)( 4,18)( 5,12, 8,16, 9,13)( 6,11, 7,15,10,14)$ |
| $ 6, 6, 2, 2, 2 $ | $27$ | $6$ | $( 1, 2)( 3,17)( 4,18)( 5,12, 9,13, 8,16)( 6,11,10,14, 7,15)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 4,17)( 2, 3,18)( 5, 8, 9)( 6, 7,10)(11,14,15)(12,13,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $6$ | $3$ | $( 1, 4,17)( 2, 3,18)( 5, 8, 9)( 6, 7,10)(11,15,14)(12,16,13)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $18$ | $3$ | $( 1, 5,11)( 2, 6,12)( 3, 7,13)( 4, 8,14)( 9,15,17)(10,16,18)$ |
| $ 9, 9 $ | $18$ | $9$ | $( 1, 5,11, 4, 8,14,17, 9,15)( 2, 6,12, 3, 7,13,18,10,16)$ |
| $ 9, 9 $ | $18$ | $9$ | $( 1, 5,11,17, 9,15, 4, 8,14)( 2, 6,12,18,10,16, 3, 7,13)$ |
Group invariants
| Order: | $162=2 \cdot 3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [162, 19] |
| Character table: |
2 1 . . 1 1 1 1 1 . . . . .
3 4 3 3 3 3 1 1 1 4 3 2 2 2
1a 3a 3b 3c 3d 2a 6a 6b 3e 3f 3g 9a 9b
2P 1a 3a 3b 3d 3c 1a 3c 3d 3e 3f 3g 9a 9b
3P 1a 1a 1a 1a 1a 2a 2a 2a 1a 1a 1a 3e 3e
5P 1a 3a 3b 3d 3c 2a 6b 6a 3e 3f 3g 9a 9b
7P 1a 3a 3b 3c 3d 2a 6a 6b 3e 3f 3g 9a 9b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 -1 -1 -1 1 1 1 1 1
X.3 2 2 2 2 2 . . . 2 2 -1 -1 -1
X.4 2 -1 -1 2 2 . . . 2 -1 2 -1 -1
X.5 2 -1 -1 2 2 . . . 2 -1 -1 -1 2
X.6 2 -1 -1 2 2 . . . 2 -1 -1 2 -1
X.7 3 . . A /A -1 B /B 3 . . . .
X.8 3 . . /A A -1 /B B 3 . . . .
X.9 3 . . A /A 1 -B -/B 3 . . . .
X.10 3 . . /A A 1 -/B -B 3 . . . .
X.11 6 . -3 . . . . . -3 3 . . .
X.12 6 3 . . . . . . -3 -3 . . .
X.13 6 -3 3 . . . . . -3 . . . .
A = 3*E(3)^2
= (-3-3*Sqrt(-3))/2 = -3-3b3
B = -E(3)
= (1-Sqrt(-3))/2 = -b3
|