Properties

Label 18T879
Order \(331776\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $879$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,4,17)(2,3,18)(7,8)(9,10)(11,16,14,12,15,13), (1,6,14)(2,5,13)(3,9,15,4,10,16)(7,12,18,8,11,17), (1,14,5)(2,13,6)(3,15,10,17,11,8)(4,16,9,18,12,7)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $C_6$ x 3
12:  $A_4$ x 5, $C_6\times C_2$
24:  $A_4\times C_2$ x 15
48:  $C_2^2 \times A_4$ x 5, $C_2^4:C_3$
96:  12T56 x 3
192:  12T90
648:  $S_3 \wr C_3 $
1296:  18T283
2592:  18T399
5184:  18T472
41472:  12T292
82944:  18T765
165888:  18T838

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$

Degree 6: None

Degree 9: $S_3 \wr C_3 $

Low degree siblings

18T879 x 23

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 360 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $331776=2^{12} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.