Properties

Label 18T874
Order \(279936\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $874$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,14,7)(2,13,8)(3,15,9)(4,16,12,5,17,10)(6,18,11), (1,10,2,11,3,12)(4,7,5,9,6,8)(13,18,14,17)(15,16), (1,8,13,3,7,14,2,9,15)(4,10,16,6,11,18,5,12,17)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$
8:  $D_{4}$
12:  $D_{6}$
24:  $S_4$ x 3, $(C_6\times C_2):C_2$
48:  $S_4\times C_2$ x 3
96:  $V_4^2:S_3$, 12T49 x 3
192:  12T100
384:  12T135

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: $S_3$

Degree 6: $S_3$

Degree 9: None

Low degree siblings

18T871 x 3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 174 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $279936=2^{7} \cdot 3^{7}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.