Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $86$ | |
| Group : | $C_3\wr S_3$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,10,15,17,8,13,3,6,11)(2,9,16,18,7,14,4,5,12), (1,16,17,14,3,12)(2,15,18,13,4,11)(5,8,9,6,7,10) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $S_3$, $C_6$ 18: $S_3\times C_3$ 54: $C_3^2 : C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 6: $S_3$
Degree 9: $C_3 \wr S_3 $
Low degree siblings
9T20 x 3, 18T86 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $3$ | $(11,13,15)(12,14,16)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $3$ | $(11,15,13)(12,16,14)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $3$ | $3$ | $( 5, 7, 9)( 6, 8,10)(11,13,15)(12,14,16)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $( 5, 7, 9)( 6, 8,10)(11,15,13)(12,16,14)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $3$ | $3$ | $( 5, 9, 7)( 6,10, 8)(11,15,13)(12,16,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 2)( 3, 4)( 5,11)( 6,12)( 7,13)( 8,14)( 9,15)(10,16)(17,18)$ |
| $ 6, 6, 2, 2, 2 $ | $9$ | $6$ | $( 1, 2)( 3, 4)( 5,11, 7,13, 9,15)( 6,12, 8,14,10,16)(17,18)$ |
| $ 6, 6, 2, 2, 2 $ | $9$ | $6$ | $( 1, 2)( 3, 4)( 5,11, 9,15, 7,13)( 6,12,10,16, 8,14)(17,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 3,17)( 2, 4,18)( 5, 7, 9)( 6, 8,10)(11,13,15)(12,14,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $3$ | $3$ | $( 1, 3,17)( 2, 4,18)( 5, 7, 9)( 6, 8,10)(11,15,13)(12,16,14)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $3$ | $3$ | $( 1, 3,17)( 2, 4,18)( 5, 9, 7)( 6,10, 8)(11,15,13)(12,16,14)$ |
| $ 6, 2, 2, 2, 2, 2, 2 $ | $9$ | $6$ | $( 1, 4,17, 2, 3,18)( 5,11)( 6,12)( 7,13)( 8,14)( 9,15)(10,16)$ |
| $ 6, 6, 6 $ | $9$ | $6$ | $( 1, 4,17, 2, 3,18)( 5,11, 7,13, 9,15)( 6,12, 8,14,10,16)$ |
| $ 6, 6, 6 $ | $9$ | $6$ | $( 1, 4,17, 2, 3,18)( 5,11, 9,15, 7,13)( 6,12,10,16, 8,14)$ |
| $ 6, 2, 2, 2, 2, 2, 2 $ | $9$ | $6$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,17)(10,18)(11,16,13,12,15,14)$ |
| $ 6, 6, 6 $ | $9$ | $6$ | $( 1, 5, 3, 7,17, 9)( 2, 6, 4, 8,18,10)(11,16,13,12,15,14)$ |
| $ 6, 6, 6 $ | $9$ | $6$ | $( 1, 5,17, 9, 3, 7)( 2, 6,18,10, 4, 8)(11,16,13,12,15,14)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $18$ | $3$ | $( 1, 6,11)( 2, 5,12)( 3, 8,13)( 4, 7,14)( 9,16,18)(10,15,17)$ |
| $ 9, 9 $ | $18$ | $9$ | $( 1, 6,11, 3, 8,13,17,10,15)( 2, 5,12, 4, 7,14,18, 9,16)$ |
| $ 9, 9 $ | $18$ | $9$ | $( 1, 6,11,17,10,15, 3, 8,13)( 2, 5,12,18, 9,16, 4, 7,14)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1,17, 3)( 2,18, 4)( 5, 9, 7)( 6,10, 8)(11,15,13)(12,16,14)$ |
Group invariants
| Order: | $162=2 \cdot 3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [162, 10] |
| Character table: Data not available. |