Properties

Label 18T857
Order \(279936\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $857$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,16,13,12,8,4,3,17,14,11,9,5,2,18,15,10,7,6), (1,7,15)(2,9,14,3,8,13)(4,11,17)(5,10,18)(6,12,16)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $C_6$ x 3
8:  $D_{4}$
12:  $A_4$, $C_6\times C_2$
24:  $A_4\times C_2$ x 3, $D_4 \times C_3$
48:  $C_2^2 \times A_4$
96:  $C_2^4:C_6$, 12T51
192:  12T87
384:  12T134

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: $C_3$

Degree 6: $C_6$

Degree 9: None

Low degree siblings

18T858

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 159 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $279936=2^{7} \cdot 3^{7}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.