Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $85$ | |
| Group : | $C_3^3:C_6$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3)(2,4)(5,6)(7,9)(8,10)(11,12)(13,15)(14,16)(17,18), (1,14,8,4,15,9,17,11,5)(2,13,7,3,16,10,18,12,6) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $S_3$, $C_6$ 18: $S_3\times C_3$ 54: $C_3^2 : C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 6: $C_6$
Degree 9: $(C_3^2:C_3):C_2$
Low degree siblings
9T22 x 3, 18T85 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $(11,14,15)(12,13,16)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $( 5, 8, 9)( 6, 7,10)(11,14,15)(12,13,16)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $( 5, 8, 9)( 6, 7,10)(11,15,14)(12,16,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $27$ | $2$ | $( 1, 2)( 3,17)( 4,18)( 5, 6)( 7, 9)( 8,10)(11,12)(13,15)(14,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 4,17)( 2, 3,18)( 5, 8, 9)( 6, 7,10)(11,14,15)(12,13,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $6$ | $3$ | $( 1, 4,17)( 2, 3,18)( 5, 8, 9)( 6, 7,10)(11,15,14)(12,16,13)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $9$ | $3$ | $( 1, 5,11)( 2, 6,12)( 3, 7,13)( 4, 8,14)( 9,15,17)(10,16,18)$ |
| $ 9, 9 $ | $18$ | $9$ | $( 1, 5,11, 4, 8,14,17, 9,15)( 2, 6,12, 3, 7,13,18,10,16)$ |
| $ 6, 6, 6 $ | $27$ | $6$ | $( 1, 6,11, 2, 5,12)( 3, 9,13,17, 7,15)( 4,10,14,18, 8,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $9$ | $3$ | $( 1,11, 5)( 2,12, 6)( 3,13, 7)( 4,14, 8)( 9,17,15)(10,18,16)$ |
| $ 9, 9 $ | $18$ | $9$ | $( 1,11, 8, 4,14, 9,17,15, 5)( 2,12, 7, 3,13,10,18,16, 6)$ |
| $ 6, 6, 6 $ | $27$ | $6$ | $( 1,12, 5, 2,11, 6)( 3,15, 7,17,13, 9)( 4,16, 8,18,14,10)$ |
Group invariants
| Order: | $162=2 \cdot 3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [162, 11] |
| Character table: |
2 1 . . . 1 . . 1 . 1 1 . 1
3 4 3 3 3 1 4 3 2 2 1 2 2 1
1a 3a 3b 3c 2a 3d 3e 3f 9a 6a 3g 9b 6b
2P 1a 3a 3b 3c 1a 3d 3e 3g 9b 3g 3f 9a 3f
3P 1a 1a 1a 1a 2a 1a 1a 1a 3d 2a 1a 3d 2a
5P 1a 3a 3b 3c 2a 3d 3e 3g 9b 6b 3f 9a 6a
7P 1a 3a 3b 3c 2a 3d 3e 3f 9a 6a 3g 9b 6b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 -1 1 1 1 1 -1 1 1 -1
X.3 1 1 1 1 -1 1 1 A A -A /A /A -/A
X.4 1 1 1 1 -1 1 1 /A /A -/A A A -A
X.5 1 1 1 1 1 1 1 A A A /A /A /A
X.6 1 1 1 1 1 1 1 /A /A /A A A A
X.7 2 -1 -1 2 . 2 -1 2 -1 . 2 -1 .
X.8 2 -1 -1 2 . 2 -1 B -A . /B -/A .
X.9 2 -1 -1 2 . 2 -1 /B -/A . B -A .
X.10 6 . -3 . . -3 3 . . . . . .
X.11 6 3 . . . -3 -3 . . . . . .
X.12 6 -3 3 . . -3 . . . . . . .
X.13 6 . . -3 . 6 . . . . . . .
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 2*E(3)^2
= -1-Sqrt(-3) = -1-i3
|