Properties

Label 18T840
Order \(165888\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $840$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,13,7)(2,14,8)(3,11,5)(4,12,6)(9,17,15)(10,18,16), (1,5,12,2,6,11)(3,7,15)(4,8,16)(9,13,17,10,14,18), (1,6,11,18,9,13)(2,5,12,17,10,14)(3,8,15,4,7,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $C_6$
12:  $A_4$ x 5
24:  $A_4\times C_2$ x 5
48:  $C_2^4:C_3$
96:  12T56
648:  $S_3 \wr C_3 $
2592:  18T399
41472:  12T292

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$

Degree 6: None

Degree 9: $S_3 \wr C_3 $

Low degree siblings

18T838 x 12, 18T840 x 11

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 180 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $165888=2^{11} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.