Properties

Label 18T839
Order \(165888\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $839$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,2)(3,18,4,17)(5,6)(7,9,8,10)(11,13,15,12,14,16), (1,17,4,2,18,3)(11,14,15)(12,13,16), (1,5,13,2,6,14)(3,7,11,4,8,12)(9,16,18)(10,15,17)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $C_6$
12:  $A_4$ x 5
24:  $A_4\times C_2$ x 5
48:  $C_2^4:C_3$
96:  12T56
324:  $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$
648:  18T199
1296:  18T322
2592:  18T400
20736:  12T284
41472:  18T699
82944:  18T786

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$

Degree 6: None

Degree 9: $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$

Low degree siblings

18T839 x 11

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 192 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $165888=2^{11} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.