Properties

Label 18T838
Order \(165888\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $838$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,3)(2,4)(5,6)(7,10,8,9)(11,14,15,12,13,16)(17,18), (1,14,8,4,15,9,2,13,7,3,16,10)(5,18,11,6,17,12), (1,11,9)(2,12,10)(3,15,6,4,16,5)(7,17,13,8,18,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $C_6$
12:  $A_4$ x 5
24:  $A_4\times C_2$ x 5
48:  $C_2^4:C_3$
96:  12T56
648:  $S_3 \wr C_3 $
2592:  18T399
41472:  12T292

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$

Degree 6: None

Degree 9: $S_3 \wr C_3 $

Low degree siblings

18T838 x 11, 18T840 x 12

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 180 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $165888=2^{11} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.