Properties

Label 18T836
Order \(165888\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $836$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,5,4)(2,6,3)(7,13,9,17,11,15)(8,14,10,18,12,16), (1,10,6,8,3,12)(2,9,5,7,4,11)(13,16,18,14,15,17), (1,14,4,17,2,13,3,18)(5,16,6,15)(7,12,9)(8,11,10)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
6:  $S_3$
8:  $C_2^3$
12:  $D_{6}$ x 3
24:  $S_4$, $S_3 \times C_2^2$
48:  $S_4\times C_2$ x 3
96:  12T48
1296:  $S_3\wr S_3$
2592:  18T394
82944:  12T294

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 6: None

Degree 9: $S_3\wr S_3$

Low degree siblings

18T836 x 3, 18T837 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 130 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $165888=2^{11} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.